Search results for: Textile Wet Processing.
1188 Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging
Authors: See Zi Siang, Khairul Hazrin Hashim, Harold Thwaites, Lee Xia Sheng, Ooi Wooi Har
Abstract:
The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.
Keywords: High Dynamic Range Image, Photography Workflow Optimization, Digital Negative Image, Architectural Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171187 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.
Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10161186 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing
Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida
Abstract:
This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19621185 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: Mobile augmented reality, remote collaboration, user experience, cognitive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13381184 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties
Authors: J. Samuel, S. Al-Enezi, A. Al-Banna
Abstract:
High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.
Keywords: HDPE, carbon nanofiber, ionic liquid, complex viscosity, modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561183 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6101182 Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry
Authors: R. Chanajaree, D. Luanwiset, K. Pongpratea
Abstract:
Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY).
Keywords: Dye removal, binding free energies, quantum calculation, docking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7191181 Rotation Invariant Fusion of Partial Image Parts in Vista Creation using Missing View Regeneration
Authors: H. B. Kekre, Sudeep D. Thepade
Abstract:
The automatic construction of large, high-resolution image vistas (mosaics) is an active area of research in the fields of photogrammetry [1,2], computer vision [1,4], medical image processing [4], computer graphics [3] and biometrics [8]. Image stitching is one of the possible options to get image mosaics. Vista Creation in image processing is used to construct an image with a large field of view than that could be obtained with a single photograph. It refers to transforming and stitching multiple images into a new aggregate image without any visible seam or distortion in the overlapping areas. Vista creation process aligns two partial images over each other and blends them together. Image mosaics allow one to compensate for differences in viewing geometry. Thus they can be used to simplify tasks by simulating the condition in which the scene is viewed from a fixed position with single camera. While obtaining partial images the geometric anomalies like rotation, scaling are bound to happen. To nullify effect of rotation of partial images on process of vista creation, we are proposing rotation invariant vista creation algorithm in this paper. Rotation of partial image parts in the proposed method of vista creation may introduce some missing region in the vista. To correct this error, that is to fill the missing region further we have used image inpainting method on the created vista. This missing view regeneration method also overcomes the problem of missing view [31] in vista due to cropping, irregular boundaries of partial image parts and errors in digitization [35]. The method of missing view regeneration generates the missing view of vista using the information present in vista itself.Keywords: Vista, Overlap Estimation, Rotation Invariance, Missing View Regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231180 A Review on Cloud Computing and Internet of Things
Authors: Sahar S. Tabrizi, Dogan Ibrahim
Abstract:
Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.
Keywords: Cloud computing, cloud services, IaaS, PaaS, SaaS, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13901179 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.
Keywords: Physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8501178 Artifacts in Spiral X-ray CT Scanners: Problems and Solutions
Authors: Mehran Yazdi, Luc Beaulieu
Abstract:
Artifact is one of the most important factors in degrading the CT image quality and plays an important role in diagnostic accuracy. In this paper, some artifacts typically appear in Spiral CT are introduced. The different factors such as patient, equipment and interpolation algorithm which cause the artifacts are discussed and new developments and image processing algorithms to prevent or reduce them are presented.Keywords: CT artifacts, Spiral CT, Artifact removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45051177 Production of Carbon Nanotubes by Iron Catalyst
Authors: Ezgi Dündar-Tekkaya, Nilgün Karatepe
Abstract:
Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy.Keywords: Carbon nanotube, catalyst, catalytic chemical vapordeposition, iron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28951176 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11671175 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
Authors: Erfan Niazi, Marianne Fenech
Abstract:
Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.
Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581174 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil
Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman
Abstract:
The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.
Keywords: Solid waste, waste of electric and electronic equipment, waste management, institutional generation of solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681173 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing
Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill
Abstract:
In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.Keywords: Idea ontology, innovation management, open innovation, semantic search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841172 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms
Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov
Abstract:
The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.
Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3711171 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11781170 Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing
Authors: Esam I. Jassim, Mohamed M. Awad
Abstract:
Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.Keywords: CFD, Particle Separation, Shock wave, Supersonic Nozzle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32501169 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.
Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6161168 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).
Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761167 Survey of Communication Technologies for IoT Deployments in Developing Regions
Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen
Abstract:
The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.
Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3921166 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials
Authors: Chongyang Ye, Rong Liu
Abstract:
Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.
Keywords: Elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4151165 Literature-Based Discoveries in Lupus Treatment
Authors: Oluwaseyi Jaiyeoba, Vetria Byrd
Abstract:
Systemic lupus erythematosus (aka lupus) is a chronic disease known for its chameleon-like ability to mimic symptoms of other diseases rendering it hard to detect, diagnose and treat. The heterogeneous nature of the disease generates disparate data that are often multifaceted and multi-dimensional. Musculoskeletal manifestation of lupus is one of the most common clinical manifestations of lupus. This research links disparate literature on the treatment of lupus as it affects the musculoskeletal system using the discoveries from literature-based research articles available on the PubMed database. Several Natural Language Processing (NPL) tools exist to connect disjointed but related literature, such as Connected Papers, Bitola, and Gopalakrishnan. Literature-based discovery (LBD) has been used to bridge unconnected disciplines based on text mining procedures. The technical/medical literature consists of many technical/medical concepts, each having its sub-literature. This approach has been used to link Parkinson’s, Raynaud, and Multiple Sclerosis treatment within works of literature. Literature-based discovery methods can connect two or more related but disjointed literature concepts to produce a novel and plausible approach to solving a research problem. Data visualization techniques with the help of natural language processing tools are used to visually represent the result of literature-based discoveries. Literature search results can be voluminous, but Data visualization processes can provide insight and detect subtle patterns in large data. These insights and patterns can lead to discoveries that would have otherwise been hidden from disjointed literature. In this research, literature data are mined and combined with visualization techniques for heterogeneous data to discover viable treatments reported in the literature for lupus expression in the musculoskeletal system. This research answers the question of using literature-based discovery to identify potential treatments for a multifaceted disease like lupus. A three-pronged methodology is used in this research: text mining, natural language processing, and data visualization. These three research-related fields are employed to identify patterns in lupus-related data that, when visually represented, could aid research in the treatment of lupus. This work introduces a method for visually representing interconnections of various lupus-related literature. The methodology outlined in this work is the first step toward literature-based research and treatment planning for the musculoskeletal manifestation of lupus. The results also outline the interconnection of complex, disparate data associated with the manifestation of lupus in the musculoskeletal system. The societal impact of this work is broad. Advances in this work will improve the quality of life for millions of persons in the workforce currently diagnosed and silently living with a musculoskeletal disease associated with lupus.
Keywords: Systemic lupus erythematosus, LBD, Data Visualization, musculoskeletal system, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5061164 Defect Prevention and Detection of DSP-software
Authors: Deng Shiwei
Abstract:
The users are now expecting higher level of DSP(Digital Signal Processing) software quality than ever before. Prevention and detection of defect are critical elements of software quality assurance. In this paper, principles and rules for prevention and detection of defect are suggested, which are not universal guidelines, but are useful for both novice and experienced DSP software developers.Keywords: defect detection, defect prevention, DSP-software, software development, software testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18111163 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment
Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva
Abstract:
The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.
Keywords: Kazakhstan, oil, safety, toxic metals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561162 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics
Authors: Yu Shi, Rong Liu, Jingyun Lv
Abstract:
Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.
Keywords: Laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801161 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061160 Some Properties of IF Rough Relational Algebraic Operators in Medical Databases
Authors: Chhaya Gangwal, R. N. Bhaumik, Shishir Kumar
Abstract:
Some properties of Intuitionistic Fuzzy (IF) rough relational algebraic operators under an IF rough relational data model are investigated and illustrated using diabetes and heart disease databases. These properties are important and desirable for processing queries in an effective and efficient manner.
Keywords: IF Set, Rough Set, IF Rough Relational Database, IF rough Relational Operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541159 Using Smartphones as an Instrument of Early Warning and Emergency Localization
Authors: David Kubát
Abstract:
This paper suggests using smartphones and community GPS application to make alerts more accurate and therefore positively influence the entire warning process. The paper is based on formerly published paper describing a Radio-HELP system. It summarizes existing methods and lists the advantages of proposed solution. The paper analyzes the advantages and disadvantages of each possible input, processing and output of the warning system.
Keywords: e-Call, warning, information, Radio-Help, WAZE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933