Search results for: echo path transfer function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3682

Search results for: echo path transfer function

3202 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
3201 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector

Authors: Salma Parvin, M. A. Alim

Abstract:

The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.

Keywords: DASC, forced convection, mass flow rate, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
3200 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks

Authors: Dávid Csercsik, Sándor Imre

Abstract:

The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.

Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
3199 Knowledge Transfer among Cross-Functional Teams as a Continual Improvement Process

Authors: Sergio Mauricio Pérez López, Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander

Abstract:

The culture of continuous improvement in organizations is very important as it represents a source of competitive advantage. This article discusses the transfer of knowledge between companies which formed cross-functional teams and used a dynamic model for knowledge creation as a framework. In addition, the article discusses the structure of cognitive assets in companies and the concept of "stickiness" (which is defined as an obstacle to the transfer of knowledge). The purpose of this analysis is to show that an improvement in the attitude of individual members of an organization creates opportunities, and that an exchange of information and knowledge leads to generating continuous improvements in the company as a whole. This article also discusses the importance of creating the proper conditions for sharing tacit knowledge. By narrowing gaps between people, mutual trust can be created and thus contribute to an increase in sharing. The concept of adapting knowledge to new environments will be highlighted, as it is essential for companies to translate and modify information so that such information can fit the context of receiving organizations. Adaptation will ensure that the transfer process is carried out smoothly by preventing "stickiness". When developing the transfer process on cross-functional teams (as opposed to working groups), the team acquires the flexibility and responsiveness necessary to meet objectives. These types of cross-functional teams also generate synergy due to the array of different work backgrounds of their individuals. When synergy is established, a culture of continuous improvement is created.

Keywords: Knowledge transfer, continuous improvement, teamwork, cognitive assets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
3198 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: Coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
3197 An Iterated Function System for Reich Contraction in Complete b Metric Space

Authors: R. Uthayakumar, G. Arockia Prabakar

Abstract:

In this paper, we introduce R Iterated Function System and employ the Hutchinson Barnsley theory (HB) to construct a fractal set as its unique fixed point by using Reich contractions in a complete b metric space. We discuss about well posedness of fixed point problem for b metric space.

Keywords: Fractals, Iterated Function System, Compact set, Reich Contraction, Well posedness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3196 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function

Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi

Abstract:

Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.

Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3809
3195 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

Abstract:

A salinity gradient solar pond is a free energy source system for collecting, convertingand storing solar energy as heat. In thispaper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transferbehaviour of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results arefound to be in good agreement.

Keywords: Finite Difference method, Salt-gradient solar-pond, Solar energy, Transient heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4978
3194 On Fractional (k,m)-Deleted Graphs with Constrains Conditions

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Let G be a graph of order n, and let k  2 and m  0 be two integers. Let h : E(G)  [0, 1] be a function. If e∋x h(e) = k holds for each x  V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e  E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e  E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G)  k + m + m k+1 , n  4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)}  n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

Keywords: Graph, degree condition, fractional k-factor, fractional (k, m)-deleted graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
3193 Analysis of Gamma-Ray Spectra Using Levenberg-Marquardt Method

Authors: A. H. Fatah, A. H. Ahmed

Abstract:

Levenberg-Marquardt method (LM) was proposed to be applied as a non-linear least-square fitting in the analysis of a natural gamma-ray spectrum that was taken by the Hp (Ge) detector. The Gaussian function that composed of three components, main Gaussian, a step background function and tailing function in the lowenergy side, has been suggested to describe each of the y-ray lines mathematically in the spectrum. The whole spectrum has been analyzed by determining the energy and relative intensity for the strong y-ray lines.

Keywords: Gamma-Ray, Spectrum analysis, Non-linear leastsquare fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
3192 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri

Abstract:

Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.

Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3207
3191 A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment

Authors: Yi Jianjun, Sun Yingce, Hu Diqing, Li Chenggang

Abstract:

Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.

Keywords: Heavy-loaded Off-road Vehicle, Power Driving-line, Modularized Design, Performance Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
3190 New Investigation of the Exchange Effects Role on the Elastic and Inelastic Scattering of α-Particles on 9Be

Authors: A. Amar, N. Burtebayev, Zh. K. Kerimkulov, M. K. Baktybayev, J. T. Burtebayeva, A. K. Morzabayev, S. K. Sakhiev, N. Saduyev, S. B. Sakuta

Abstract:

Elastic and inelastic scattering of α-particles by 9Be nuclei at different incident energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by 9Be at different energies have been obtained. Coupled Reaction Channel (CRC) of elastic scattering, inelastic scattering and transfer reaction has been calculated using Fresco Code. The effect of involving CRC calculations on the analysis of differential cross section has been studied. The transfer reaction of (5He) in the reaction 9Be(α,9Be)α has been studied. The spectroscopic factor of 9Be≡α+5He has been extracted.

Keywords: Elastic scattering of α-particles, Optical model parameters, Coupled Reaction Channel, the transfer reaction of (5He), the spectroscopic factor of 9Be≡α+5He.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
3189 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: Sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
3188 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample

Authors: Suwimon Saneewong Na Ayuttaya

Abstract:

This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.

Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
3187 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
3186 Evaluation of Optimal Transfer Capability in Power System Interconnection

Authors: Jin-O Kim, Hyun-Il Son

Abstract:

As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method in this paper, and is compared with well-being method and risk-benefit method. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency)

Keywords: ATC, power system interconnection, well-being method, cost-optimization method, risk-benefit analysis, outage cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
3185 Order Reduction using Modified Pole Clustering and Pade Approximations

Authors: C.B. Vishwakarma

Abstract:

The authors present a mixed method for reducing the order of the large-scale dynamic systems. In this method, the denominator polynomial of the reduced order model is obtained by using the modified pole clustering technique while the coefficients of the numerator are obtained by Pade approximations. This method is conceptually simple and always generates stable reduced models if the original high-order system is stable. The proposed method is illustrated with the help of the numerical examples taken from the literature.

Keywords: Modified pole clustering, order reduction, padeapproximation, stability, transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979
3184 Kinetics of Aggregation in Media with Memory

Authors: A. Brener, B. Balabekov, N. Zhumataev

Abstract:

In the paper we submit the non-local modification of kinetic Smoluchowski equation for binary aggregation applying to dispersed media having memory. Our supposition consists in that that intensity of evolution of clusters is supposed to be a function of the product of concentrations of the lowest orders clusters at different moments. The new form of kinetic equation for aggregation is derived on the base of the transfer kernels approach. This approach allows considering the influence of relaxation times hierarchy on kinetics of aggregation process in media with memory.

Keywords: Binary aggregation, Media with memory, Non-local model, Relaxation times

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
3183 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824
3182 Laminar Impinging Jet Heat Transfer for Curved Plates

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

The purpose of the present study is to analyze the effect of the target plate-s curvature on the heat transfer in laminar confined impinging jet flows. Numerical results from two dimensional compressible finite volume solver are compared between three different shapes of impinging plates: Flat, Concave and Convex plates. The remarkable result of this study proves that the stagnation Nusselt number in laminar range of Reynolds number based on the slot width is maximum in convex surface and is minimum in concave plate. These results refuse the previous data in literature stating the amount of the stagnation Nusselt number is greater in concave surface related to flat plate configuration.

Keywords: Concave, Convex, Heat transfer, Impinging jet, Laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
3181 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet

Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu

Abstract:

The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.

Keywords: Boundary layer, Nanofluid, Shrinking sheet, Brownian motion, Thermophoresis, Similarity solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805
3180 Using Genetic Algorithm to Improve Information Retrieval Systems

Authors: Ahmed A. A. Radwan, Bahgat A. Abdel Latef, Abdel Mgeid A. Ali, Osman A. Sadek

Abstract:

This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.

Keywords: Cosine similarity, Fitness function, Genetic Algorithm, Information Retrieval, Query learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
3179 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation

Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha

Abstract:

In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.

Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
3178 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: Radiative transfer equation, finite volume method, conduction, transient radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
3177 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: Autonomous driving, Obstacle avoidance, Optimal control, Path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
3176 Vision Based Robot Experiment: Measurement of Path Related Characteristics

Authors: M. H. Korayem, K. Khoshhal, H. Aliakbarpour

Abstract:

In this paper, a vision based system has been used for controlling an industrial 3P Cartesian robot. The vision system will recognize the target and control the robot by obtaining images from environment and processing them. At the first stage, images from environment are changed to a grayscale mode then it can diverse and identify objects and noises by using a threshold objects which are stored in different frames and then the main object will be recognized. This will control the robot to achieve the target. A vision system can be an appropriate tool for measuring errors of a robot in a situation where the experimental test is conducted for a 3P robot. Finally, the international standard ANSI/RIA R15.05-2 is used for evaluating the path-related characteristics of the robot. To evaluate the performance of the proposed method experimental test is carried out.

Keywords: Robot, Vision, Experiment, Standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
3175 CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

Authors: S. Jain, Y. Deshpande

Abstract:

The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment. This paper presents a computational fluid dynamics (CFD) modeling of air flow distribution from a radiator axial flow fan used in an acid pump truck Tier4 (APT T4) Repower. This axial flow fan augments the transfer of heat from the engine mounted on the APT T4. CFD analysis was performed for an area weighted average static pressure difference at the inlet and outlet of the fan. Pressure contours, velocity vectors, and path lines were plotted for detailing the flow characteristics for different orientations of the fan blade. The results were then compared and verified against known theoretical observations and actual experimental data. This study shows that a CFD simulation can be very useful for predicting and understanding the flow distribution from a radiator fan for further research work.

Keywords: Computational fluid dynamics (CFD), acid pump truck (APT) Tier4 Repower, axial flow fan, area weighted average static pressure difference, and contour plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8492
3174 Evaluation of Coupling Factor in RF Inductively Coupled Systems

Authors: Rômulo Volpato, Filipe Ramos, Paulo Crepaldi, Michel Santana, Tales C Pimenta

Abstract:

This work presents an approach for the measurement of mutual inductance on near field inductive coupling. The mutual inductance between inductive circuits allows the simulation of energy transfer from reader to tag, that can be used in RFID and powerless implantable devices. It also allows one to predict the maximum voltage in the tag of the radio-frequency system.

Keywords: RFID, Inductive Coupling, Energy Transfer, Implantable Device

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
3173 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection

Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf

Abstract:

Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.

Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798