Search results for: Hybrid fault diagnosis
971 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992970 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images
Authors: SP. Chokkalingam, K. Komathy
Abstract:
Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.
Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479969 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277968 Lung Nodule Detection in CT Scans
Authors: M. Antonelli, G. Frosini, B. Lazzerini, F. Marcelloni
Abstract:
In this paper we describe a computer-aided diagnosis (CAD) system for automated detection of pulmonary nodules in computed-tomography (CT) images. After extracting the pulmonary parenchyma using a combination of image processing techniques, a region growing method is applied to detect nodules based on 3D geometric features. We applied the CAD system to CT scans collected in a screening program for lung cancer detection. Each scan consists of a sequence of about 300 slices stored in DICOM (Digital Imaging and Communications in Medicine) format. All malignant nodules were detected and a low false-positive detection rate was achieved.Keywords: computer assisted diagnosis, medical imagesegmentation, shape recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827967 Clinical Decision Support for Disease Classification based on the Tests Association
Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon
Abstract:
Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634966 A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation
Authors: Hesham A. Ali, Mofreh M. Salem, Ahmed A. Hamza
Abstract:
Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.
Keywords: Grid computing, grid information service, P2P, resource discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976965 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm
Authors: R. Srinivasa Rao
Abstract:
Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168964 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks
Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim
Abstract:
Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151963 A Study and Implementation of On-line Learning Diagnosis and Inquiry System
Authors: YuLung Wu
Abstract:
In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.Keywords: Knowledge Structure Graph, On-line LearningDiagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465962 Carbon Dioxide Removal from Flue Gas Using Amine-Based Hybrid Solvent Absorption
Authors: Supitcha Rinprasertmeechai, Sumaeth Chavadej, Pramoch Rangsunvigit, Santi Kulprathipanja
Abstract:
This study was to investigate the performance of hybrid solvents blended between primary, secondary, or tertiary amines and piperazine (PZ) for CO2 removal from flue gas in terms of CO2 absorption capacity and regeneration efficiency at 90 oC. Alkanolamines used in this work were monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA). The CO2 absorption was experimentally examined under atmospheric pressure and room temperature. The results show that MEA blend with PZ provided the maximum CO2 absorption capacity of 0.50 mol CO2/mol amine while TEA provided the minimum CO2 absorption capacity of 0.30 mol CO2/mol amine. TEA was easier to regenerate for both first cycle and second cycle with less loss of absorption capacity. The regeneration efficiency of TEA was 95.09 and 92.89 %, for the first and second generation cycles, respectively.Keywords: CO2 absorption capacity, regeneration efficiency, CO2 removal, flue gas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577961 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412960 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834959 Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm
Authors: Alawode Kehinde O., Jubril Abimbola M. Komolafe Olusola A.
Abstract:
This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.Keywords: optimal power flow, multiobjective power dispatch, evolutionary algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267958 Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study
Authors: M. Almeshal, M. O. Tokhi, K. M. Goher
Abstract:
A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.
Keywords: double inverted pendulum, modelling, robust control, simulation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539957 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: Anjan Babu G, Sumana G, Rajasekhar M
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.
Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003956 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach
Authors: Rajendra M Sonar
Abstract:
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077955 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)
Authors: K. Vijayalakshmi, S. Radhakrishnan
Abstract:
In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.
Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448954 Anaerobic Treatment of Produced Water
Authors: F. C. Khong, M. H. Isa, S. R. M. Kutty, S. A. Farhan
Abstract:
An experimental study of anaerobic treatment was performed by hybrid upflow anaerobic sludge blanket (HUASB) reactor to treat produced water (PW) of an onshore crude oil terminal (COD: 1597 mg/L, NH3-N: 14.7 mg/L, phenol: 13.8 mg/L, BOD5: 862 mg/L, sodium: 6240 mg/L and chloride 9530 mg/L). The produced water with high salinity and other toxic substances will inhibit the methanogens performance if there is no adaptation on biomass before anaerobic digestion. COD removal from produced water was investigated at five different dilutions of produced water and tap water (TW) without any nutrient addition and pre-treatment. The dilution ratios were 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW. The reactor was evaluated at mesophilic operating condition (35 ± 2 °C) at 5 days of HRT for 250 days continuous feed. The average COD removals for 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW were found to be approximately 76.1%, 73.8%, 70.3%, 46.3% and 61.82% respectively, with final average effluent COD of 123.7 mg/L, 240 mg/L, 294 mg/L, 589 mg/L and 738 mg/L, respectively.
Keywords: Anaerobic, fixed film, hybrid UASB, produced water, inhibitor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499953 Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm
Authors: Sang-Youl Lee
Abstract:
This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.
Keywords: Tensile force detection, cable-stayed structures, hybrid system identification (h-SI), dynamic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130952 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility
Authors: Ali Hamadi Dicko, Nicolas Tong-Yette, Benjamin Gilles, François Faure, Olivier Palombi
Abstract:
A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.
Keywords: Hybrid, modeling, fast simulation, lumbar spine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382951 Compensated CIC-Hybrid Signed Digit Decimation Filter
Authors: Vishal Awasthi, Krishna Raj
Abstract:
In this paper, firstly, we present the mathematical modeling of finite impulse response (FIR) filter and Cascaded Integrator Comb (CIC) filter for sampling rate reduction and then an extension of Canonical signed digit (CSD) based efficient structure is presented in framework using hybrid signed digit (HSD) arithmetic. CSD representation imposed a restriction that two non-zero CSD coefficient bits cannot acquire adjacent bit positions and therefore, represented structure is not economical in terms of speed, area and power consumption. The HSD based structure gives optimum performance in terms of area and speed with 37.02% passband droop compensation.
Keywords: Multirate filtering, compensation theory, CIC filter, compensation filter, signed digit arithmetic, canonical signed digit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074950 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: K. Metaxiotis, K. Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.
Keywords: Expert Systems, Multiobjective optimization, Evolutionary Algorithms, Portfolio Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769949 Effects of Capacitor Bank Defects on Harmonic Distortion and Park's Pattern Analysis in Induction Motors
Authors: G. Das, S. Das, P. Purkait, A. Dasgupta, M. Kumar
Abstract:
Properly sized capacitor banks are connected across induction motors for several reasons including power factor correction, reducing distortions, increasing capacity, etc. Total harmonic distortion (THD) and power factor (PF) are used in such cases to quantify the improvements obtained through connection of the external capacitor banks. On the other hand, one of the methods for assessing the motor internal condition is by the use of Park-s pattern analysis. In spite of taking adequate precautionary measures, the capacitor banks may sometimes malfunction. Such a minor fault in the capacitor bank is often not apparently discernible. This may however, give rise to substantial degradation of power factor correction performance and may also damage the supply profile. The case is more severe with the fact that the Park-s pattern gets distorted due to such external capacitor faults, and can give anomalous results about motor internal fault analyses. The aim of this paper is to present simulation and hardware laboratory test results to have an understanding of the anomalies in harmonic distortion and Park-s pattern analyses in induction motors due to capacitor bank defects.
Keywords: Capacitor bank, harmonic distortion, induction motor, Park's pattern, PSCAD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3936948 Software Reengineering Tool for Traffic Accident Data
Authors: Jagdeep Kaur, Parvinder S. Sandhu, Birinderjit Singh, Amit Verma, Sanyam Anand
Abstract:
In today-s hip hop world where everyone is running short of time and works hap hazardly,the similar scene is common on the roads while in traffic.To do away with the fatal consequences of such speedy traffics on rushy lanes, a software to analyse and keep account of the traffic and subsequent conjestion is being used in the developed countries. This software has being implemented and used with the help of a suppprt tool called Critical Analysis Reporting Environment.There has been two existing versions of this tool.The current research paper involves examining the issues and probles while using these two practically. Further a hybrid architecture is proposed for the same that retains the quality and performance of both and is better in terms of coupling of components , maintainence and many other features.Keywords: Critical Analysis Reporting Environment, coupling, hybrid architecture etc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529947 An Expert System for Car Failure Diagnosis
Authors: Ahmad T. Al-Taani
Abstract:
Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.Keywords: Expert system, car failure diagnosis, knowledgebasedsystem, CLIPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11917946 A Novel Machining Signal Filtering Technique: Z-notch Filter
Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.
Abstract:
A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.
Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884945 Study on the Seismic Response of Slope under Pulse-Like Ground Motion
Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah
Abstract:
Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is well known to be stronger than the single pulse. This research has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a stronger dynamic response.
Keywords: Velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436944 Opto-Mechanical Characterization of Aspheric Lenses from the Hybrid Method
Authors: Aliouane Toufik, Hamdi Amine, Bouzid Djamel
Abstract:
Aspheric optical components are an alternative to the use of conventional lenses in the implementation of imaging systems for the visible range. Spherical lenses are capable of producing aberrations. Therefore, they are not able to focus all the light into a single point. Instead, aspherical lenses correct aberrations and provide better resolution even with compact lenses incorporating a small number of lenses.
Metrology of these components is very difficult especially when the resolution requirements increase and insufficient or complexity of conventional tools requires the development of specific approaches to characterization.
This work is part of the problem existed because the objectives are the study and comparison of different methods used to measure surface rays hybrid aspherical lenses.
Keywords: Aspherical surface, Manufacture of lenses, precision molding, radius of curvature, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015943 Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models
Authors: D. Lingaraju, K. Ramji, M. Pramiladevi, U. Rajyalakshmi
Abstract:
Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.Keywords: ANOVA, clay, halloysite, nanocomposites, underwater shock, regression, silica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188942 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies
Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox
Abstract:
A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.
Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905