Search results for: rock mass classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2242

Search results for: rock mass classification

1792 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao

Abstract:

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
1791 Taxonomy of Structured P2P Overlay Networks Security Attacks

Authors: Zied Trifa, Maher Khemakhem

Abstract:

The survey and classification of the different security attacks in structured peer-to-peer (P2P) overlay networks can be useful to computer system designers, programmers, administrators, and users. In this paper, we attempt to provide a taxonomy of structured P2P overlay networks security attacks. We have specially focused on the way these attacks can arise at each level of the network. Moreover, we observed that most of the existing systems such as Content Addressable Network (CAN), Chord, Pastry, Tapestry, Kademlia, and Viceroy suffer from threats and vulnerability which lead to disrupt and corrupt their functioning. We hope that our survey constitutes a good help for who-s working on this area of research.

Keywords: P2P, Structured P2P Overlay Networks, DHT, Security, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1790 A Kernel Classifier using Linearised Bregman Iteration

Authors: K. A. D. N. K Wimalawarne

Abstract:

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1789 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: Mung bean, near infrared, germinatability, hard seed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1788 Design of a Neural Networks Classifier for Face Detection

Authors: F. Smach, M. Atri, J. Mitéran, M. Abid

Abstract:

Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.

Keywords: Classification, Face Detection, FPGA Hardware description, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
1787 Mineralogical and Geochemical Characteristics of Serpentinite-Derived Ni-Bearing Laterites from Fars Province, Iran: Implications for the Lateritization Process and Classification of Ni-Laterites

Authors: S. Rasti, M. A. Rajabzadeh

Abstract:

Nickel-bearing laterites occur as two parallel belts along Sedimentary Zagros Orogenic (SZO) and Metamorphic Sanandaj-Sirjan (MSS) petrostructural zones, Fars Province, south Iran. An undisturbed vertical profile of these laterites includes protolith, saprolite, clay, and oxide horizons from base to top. Highly serpentinized harzburgite with relicts of olivine and orthopyroxene is regarded as the source rock. The laterites are unusual in lacking a significant saprolite zone with little development of Ni-silicates. Hematite, saponite, dolomite, smectite and clinochlore increase, while calcite, olivine, lizardite and chrysotile decrease from saprolite to oxide zones. Smectite and clinochlore with minor calcite are the major minerals in clay zone. Contacts of different horizons in laterite profiles are gradual and characterized by a decrease in Mg concentration ranging from 18.1 to 9.3 wt.% in oxide and saprolite, respectively. The maximum Ni concentration is 0.34 wt.% (NiO) in the base of the oxide zone, and goethite is the major Ni-bearing phase. From saprolite to oxide horizons, Al2O3, K2O, TiO2, and CaO decrease, while SiO2, MnO, NiO, and Fe2O3 increase. Silica content reaches up to 45 wt.% in the upper part of the soil profile. There is a decrease in pH (8.44-8.17) and an increase in organic matter (0.28-0.59 wt.%) from base to top of the soils. The studied laterites are classified in the oxide clans which were derived from ophiolite ultramafic rocks under Mediterranean climate conditions.

Keywords: Iran, laterite, mineralogy, ophiolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
1786 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1785 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1784 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
1783 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
1782 Wave Atom Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.

Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
1781 Double Pass Solar Air Heater with Transvers Fins and without Absorber Plate

Authors: A. J. Mahmood, L. B. Y. Aldabbagh

Abstract:

The counter flow solar air heaters, with four transverse fins and wire mesh layers are constructed and investigated experimentally for thermal efficiency at a geographic location of Cyprus in the city of Famagusta. The absorber plate is replaced by sixteen steel wire mesh layers, 0.18 x 0.18cm in cross section opening and a 0.02cm in diameter. The wire mesh layers arranged in three groups, first and second include 6 layers, while the third include 4 layers. All layers fixed in the duct parallel to the glazing and each group separated from the others by wood frame thickness of 0.5cm to reduce the pressure drop. The transverse fins arranged in a way to force the air to flow through the bed like eight letter path with flow depth 3cm. The proposed design has increased the heat transfer rate, but on other hand causes a high pressure drop. The obtained results show that, for air mass flow rate range between 0.011-0.036kg/s, the thermal efficiency increases with increasing the air mass flow. The maximum efficiency obtained is 65.6% for the mass flow rate of 0.036kg/s. Moreover, the temperature difference between the outlet flow and the ambient temperature, ΔT, reduces as the air mass flow rate increase. The maximum difference between the outlet and ambient temperature obtained was 43°C for double pass for minimum mass flow rate of 0.011kg/s. Comparison with a conventional solar air heater collector shows a significantly development in the thermal efficiency.

Keywords: Counter flow, solar air heater (SAH), Wire mesh, Fins, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3179
1780 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1779 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution

Authors: Tarek Sedki

Abstract:

Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.

Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
1778 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1777 Comparative Study Using Weka for Red Blood Cells Classification

Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
1776 Nonlinear Transformation of Laser Generated Ultrasonic Pulses in Geomaterials

Authors: Elena B. Cherepetskaya, Alexander A. Karabutov, Natalia B. Podymova, Ivan Sas

Abstract:

Nonlinear evolution of broadband ultrasonic pulses passed through the rock specimens is studied using the apparatus “GEOSCAN-02M”. Ultrasonic pulses are excited by the pulses of Qswitched Nd:YAG laser with the time duration of 10 ns and with the energy of 260 mJ. This energy can be reduced to 20 mJ by some light filters. The laser beam radius did not exceed 5 mm. As a result of the absorption of the laser pulse in the special material – the optoacoustic generator–the pulses of longitudinal ultrasonic waves are excited with the time duration of 100 ns and with the maximum pressure amplitude of 10 MPa. The immersion technique is used to measure the parameters of these ultrasonic pulses passed through a specimen, the immersion liquid is distilled water. The reference pulse passed through the cell with water has the compression and the rarefaction phases. The amplitude of the rarefaction phase is five times lower than that of the compression phase. The spectral range of the reference pulse reaches 10 MHz. The cubic-shaped specimens of the Karelian gabbro are studied with the rib length 3 cm. The ultimate strength of the specimens by the uniaxial compression is (300±10) MPa. As the reference pulse passes through the area of the specimen without cracks the compression phase decreases and the rarefaction one increases due to diffraction and scattering of ultrasound, so the ratio of these phases becomes 2.3:1. After preloading some horizontal cracks appear in the specimens. Their location is found by one-sided scanning of the specimen using the backward mode detection of the ultrasonic pulses reflected from the structure defects. Using the computer processing of these signals the images are obtained of the cross-sections of the specimens with cracks. By the increase of the reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear transformation of the ultrasonic pulse passed through the specimen with horizontal cracks results in the decrease by 2.5 times of the amplitude of the rarefaction phase and in the increase of its duration by 2.1 times. By the increase of the reference pulse amplitude from 5 MPa to 10 MPa the time splitting of the phases is observed for the bipolar pulse passed through the specimen. The compression and rarefaction phases propagate with different velocities. These features of the powerful broadband ultrasonic pulses passed through the rock specimens can be described by the hysteresis model of Preisach- Mayergoyz and can be used for the location of cracks in the optically opaque materials.

Keywords: Cracks, geological materials, nonlinear evolution of ultrasonic pulses, rock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
1775 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
1774 Moment Invariants in Image Analysis

Authors: Jan Flusser

Abstract:

This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a general theory how to construct these invariants and show also a few of them in explicit forms. We review efficient numerical algorithms that can be used for moment computation and demonstrate practical examples of using moment invariants in real applications.

Keywords: Object recognition, degraded images, moments, moment invariants, geometric invariants, invariants to convolution, moment computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3921
1773 Viewers of Advertisements in Television and Cinema in the Shadow of Visuality

Authors: Mete Kazaz

Abstract:

Despite the internet, which is one of the mass media that has become quite common in recent years, the relationship of Advertisement with Television and Cinema, which have always drawn attention of researchers as basic media and where visual use is in the foreground, have also become the subject of various studies. Based on the assumption that the known fundamental effects of advertisements on consumers are closely related to the creative process of advertisements as well as the nature and characteristics of the medium where they are used, these basic mass media (Television and Cinema) and the consumer motivations of the advertisements they broadcast have become a focus of study. Given that the viewers of the mass media in question have shifted from a passive position to a more active one especially in recent years and approach contents of advertisements, as they do all contents, in a more critical and “pitiless" manner, it is possible to say that individuals make more use of advertisements than in the past and combine their individual goals with the goals of the advertisements. This study, which aims at finding out what the goals of these new individual advertisement use are, how they are shaped by the distinct characteristics of Television and Cinema, where visuality takes precedence as basic mass media, and what kind of places they occupy in the minds of consumers, has determined consumers- motivations as: “Entertainment", “Escapism", “Play", “Monitoring/Discovery", “Opposite Sex" and “Aspirations and Role Models". This study intends to reveal the differences or similarities among the needs and hence the gratifications of viewers who consume advertisements on Television or at the Cinema, which are two basic media where visuality is prioritized.

Keywords: Cinema, Television, Viewers of Advertisements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
1772 Classification Algorithms in Human Activity Recognition using Smartphones

Authors: Mohd Fikri Azli bin Abdullah, Ali Fahmi Perwira Negara, Md. Shohel Sayeed, Deok-Jai Choi, Kalaiarasi Sonai Muthu

Abstract:

Rapid advancement in computing technology brings computers and humans to be seamlessly integrated in future. The emergence of smartphone has driven computing era towards ubiquitous and pervasive computing. Recognizing human activity has garnered a lot of interest and has raised significant researches- concerns in identifying contextual information useful to human activity recognition. Not only unobtrusive to users in daily life, smartphone has embedded built-in sensors that capable to sense contextual information of its users supported with wide range capability of network connections. In this paper, we will discuss the classification algorithms used in smartphone-based human activity. Existing technologies pertaining to smartphone-based researches in human activity recognition will be highlighted and discussed. Our paper will also present our findings and opinions to formulate improvement ideas in current researches- trends. Understanding research trends will enable researchers to have clearer research direction and common vision on latest smartphone-based human activity recognition area.

Keywords: Classification algorithms, Human Activity Recognition (HAR), Smartphones

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6300
1771 Texture Feature Extraction using Slant-Hadamard Transform

Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi

Abstract:

Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.

Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
1770 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

Authors: Shivalinge Gowda

Abstract:

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.

Keywords: Mass attenuation coefficient, atomic cross-section, effective atomic number, electron density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
1769 Extraction of Symbolic Rules from Artificial Neural Networks

Authors: S. M. Kamruzzaman, Md. Monirul Islam

Abstract:

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1768 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences

Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso

Abstract:

Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.

Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
1767 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
1766 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: Menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
1765 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: Arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
1764 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache

Abstract:

This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34
1763 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: Computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819