%0 Journal Article
	%A Elena B. Cherepetskaya and  Alexander A. Karabutov and  Natalia B. Podymova and  Ivan Sas
	%D 2015
	%J International Journal of Physical and Mathematical Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 106, 2015
	%T Nonlinear Transformation of Laser Generated Ultrasonic Pulses in Geomaterials
	%U https://publications.waset.org/pdf/10002622
	%V 106
	%X Nonlinear evolution of broadband ultrasonic pulses
passed through the rock specimens is studied using the apparatus
“GEOSCAN-02M”. Ultrasonic pulses are excited by the pulses of Qswitched
Nd:YAG laser with the time duration of 10 ns and with the
energy of 260 mJ. This energy can be reduced to 20 mJ by some light
filters. The laser beam radius did not exceed 5 mm. As a result of the
absorption of the laser pulse in the special material – the optoacoustic
generator–the pulses of longitudinal ultrasonic waves are excited with
the time duration of 100 ns and with the maximum pressure
amplitude of 10 MPa. The immersion technique is used to measure
the parameters of these ultrasonic pulses passed through a specimen,
the immersion liquid is distilled water. The reference pulse passed
through the cell with water has the compression and the rarefaction
phases. The amplitude of the rarefaction phase is five times lower
than that of the compression phase. The spectral range of the
reference pulse reaches 10 MHz. The cubic-shaped specimens of the
Karelian gabbro are studied with the rib length 3 cm. The ultimate
strength of the specimens by the uniaxial compression is (300±10)
MPa. As the reference pulse passes through the area of the specimen
without cracks the compression phase decreases and the rarefaction
one increases due to diffraction and scattering of ultrasound, so the
ratio of these phases becomes 2.3:1. After preloading some horizontal
cracks appear in the specimens. Their location is found by one-sided
scanning of the specimen using the backward mode detection of the
ultrasonic pulses reflected from the structure defects. Using the
computer processing of these signals the images are obtained of the
cross-sections of the specimens with cracks. By the increase of the
reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear
transformation of the ultrasonic pulse passed through the specimen
with horizontal cracks results in the decrease by 2.5 times of the
amplitude of the rarefaction phase and in the increase of its duration
by 2.1 times. By the increase of the reference pulse amplitude from 5
MPa to 10 MPa the time splitting of the phases is observed for the
bipolar pulse passed through the specimen. The compression and
rarefaction phases propagate with different velocities. These features
of the powerful broadband ultrasonic pulses passed through the rock
specimens can be described by the hysteresis model of Preisach-
Mayergoyz and can be used for the location of cracks in the optically
opaque materials.
	%P 614 - 617