Search results for: Commognitive framework
1010 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study
Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker
Abstract:
In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.
Keywords: Admissions, algorithms, cloud computing, differentiation, fog computing, leveling, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7281009 Analyzing the Prospects and Challenges in Implementing the Legal Framework for Competition Regulation in Nigeria
Authors: Oluchukwu P. Obioma, Amarachi R. Dike
Abstract:
Competition law promotes market competition by regulating anti-competitive conduct by undertakings. There is a need for a third party to regulate the market for efficiency and supervision, since, if the market is left unchecked, it may be skewed against the consumers and the economy. Competition law is geared towards the protection of consumers from economic exploitation. It is the duty of every rational government to optimally manage its economic system by employing the best regulatory practices over the market to ensure it functions effectively and efficiently. The Nigerian government has done this by enacting the Federal Competition and Consumer Protection Act, 2018 (FCCPA). This is a comprehensive legal framework with the objective of governing competition issues in Nigeria. Prior to its enactment, the competition law regime in Nigeria was grossly inadequate despite Nigeria being the biggest economy in Africa. This latest legislation has become a bold step in the right direction. This study will use the doctrinal methodology in analyzing the FCCPA, 2018 in order to discover the extent to which the Act will guard against anti-competitive practices and promote competitive markets for the benefit of the Nigerian economy and consumers. The study finds that although the FCCPA, 2018 provides for the regulation of competition in Nigeria, there is a need to effectively tackle the challenges to the implementation of the Act and the development of anti-trust jurisprudence in Nigeria. This study concludes that incisive implementation of competition law in Nigeria will help protect consumers and create a conducive environment for economic growth, development, and protection of consumers from obnoxious competition practices.Keywords: Anti-competitive practices, competition law, competition regulation, consumer protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7801008 Utilizing Ontologies Using Ontology Editor for Creating Initial Unified Modeling Language (UML)Object Model
Authors: Waralak Vongdoiwang Siricharoen
Abstract:
One of object oriented software developing problem is the difficulty of searching the appropriate and suitable objects for starting the system. In this work, ontologies appear in the part of supporting the object discovering in the initial of object oriented software developing. There are many researches try to demonstrate that there is a great potential between object model and ontologies. Constructing ontology from object model is called ontology engineering can be done; On the other hand, this research is aiming to support the idea of building object model from ontology is also promising and practical. Ontology classes are available online in any specific areas, which can be searched by semantic search engine. There are also many helping tools to do so; one of them which are used in this research is Protégé ontology editor and Visual Paradigm. To put them together give a great outcome. This research will be shown how it works efficiently with the real case study by using ontology classes in travel/tourism domain area. It needs to combine classes, properties, and relationships from more than two ontologies in order to generate the object model. In this paper presents a simple methodology framework which explains the process of discovering objects. The results show that this framework has great value while there is possible for expansion. Reusing of existing ontologies offers a much cheaper alternative than building new ones from scratch. More ontologies are becoming available on the web, and online ontologies libraries for storing and indexing ontologies are increasing in number and demand. Semantic and Ontologies search engines have also started to appear, to facilitate search and retrieval of online ontologies.Keywords: Software Developing, Ontology, Ontology Library, Artificial Intelligent, Protégé, Object Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811007 Being a Lay Partner in Jesuit Higher Education in the Philippines: A Grounded Theory Application
Authors: Janet B. Badong-Badilla
Abstract:
In Jesuit universities, laypersons, who come from the same or different faith backgrounds or traditions, are considered as collaborators in mission. The Jesuits themselves support the contributions of the lay partners in realizing the mission of the Society of Jesus and recognize the important role that they play in education. This study aims to investigate and generate particular notions and understandings of lived experiences of being a lay partner in Jesuit universities in the Philippines, particularly those involved in higher education. Using the qualitative approach as introduced by grounded theorist Barney Glaser, the lay partners’ concept of being a partner, as lived in higher education, is generated systematically from the data collected in the field primarily through in-depth interviews, field notes and observations. Glaser’s constant comparative method of analysis of data is used going through the phases of open coding, theoretical coding, and selective coding from memoing to theoretical sampling to sorting and then writing. In this study, Glaser’s grounded theory as a methodology will provide a substantial insight into and articulation of the layperson’s actual experience of being a partner of the Jesuits in education. Such articulation provides a phenomenological approach or framework to an understanding of the meaning and core characteristics of Jesuit-Lay partnership in Jesuit educational institution of higher learning in the country. This study is expected to provide a framework or model for lay partnership in academic institutions that have the same practice of having lay partners in mission.Keywords: Grounded theory, Jesuit mission in higher education, lay partner, lived experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10691006 Optimization and GIS-Based Intelligent Decision Support System for Urban Transportation Systems Analysis
Authors: Mohamad K. Hasan, Hameed Al-Qaheri
Abstract:
Optimization plays an important role in most real world applications that support decision makers to take the right decision regarding the strategic directions and operations of the system they manage. Solutions for traffic management and traffic congestion problems are considered major problems that most decision making authorities for cities around the world are looking for. This review paper gives a full description of the traffic problem as part of the transportation planning process and present a view as a framework of urban transportation system analysis where the core of the system is a transportation network equilibrium model that is based on optimization techniques and that can also be used for evaluating an alternative solution or a combination of alternative solutions for the traffic congestion. Different transportation network equilibrium models are reviewed from the sequential approach to the multiclass combining trip generation, trip distribution, modal split, trip assignment and departure time model. A GIS-Based intelligent decision support system framework for urban transportation system analysis is suggested for implementation where the selection of optimized alternative solutions, single or packages, will be based on an intelligent agent rather than human being which would lead to reduction in time, cost and the elimination of the difficulty, by human being, for finding the best solution to the traffic congestion problem.Keywords: Multiclass simultaneous transportation equilibrium models, transportation planning, urban transportation systems analysis, intelligent decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23031005 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework for the development of a web-based instruction (WBI), which contributes towards instructional design and language development. WeCWI divides its contribution in instructional design into macro and micro perspectives. In macro perspective, being a 21st century educator by disseminating knowledge and sharing ideas with the in-class and global learners is initiated. By leveraging the virtue of technology, WeCWI aims to transform an educator into an aggregator, curator, publisher, social networker and ultimately, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective in instructional design draws attention to the pedagogical approaches focusing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches through free reading and enterprises, technology adds new dimensions and expands the boundaries of learning capacity. Lastly, WeCWI also imparts the fundamental theories and models for web-based instructors’ awareness such as interactionist theory, cognitive information processing (CIP) theory, computer-mediated communication (CMC), e-learning interactionalbased model, inquiry models, sensory mind model, and leaning styles model.
Keywords: WeCWI, instructional discovery, technological discovery, pedagogical discovery, theoretical discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22351004 Public Financial Management in Ghana: A Move beyond Reforms to Consolidation and Sustainability
Authors: Mohammed Sani Abdulai
Abstract:
Ghana’s Public Financial Management reforms have been going on for some two decades now (1997/98 to 2017/18). Given this long period of reforms, Ghana in 2019 is putting together both a Public Financial Management (PFM) strategy and a Ghana Integrated Financial Management Information System (GIFMIS) strategy for the next 5-years (2020-2024). The primary aim of these dual strategies is assisting the country in moving beyond reforms to consolidation and sustainability. In this paper we, first, examined the evolution of Ghana’s PFM reforms. We, secondly, reviewed the legal and institutional reforms undertaken to strengthen the country’s key PFM institutions. Thirdly, we summarized the strengths and weaknesses identified by the 2018 Public Expenditure and Financial Accountability (PEFA) assessment of Ghana’s PFM system relating to its macro-fiscal framework, budget preparation and approval, budget execution, accounting and fiscal reporting as well as external scrutiny and audit. We, finally, considered what the country should be doing to achieve its intended goal of PFM consolidation and sustainability. Using a qualitative method of review and analysis of existing documents, we, through this paper, brought to the fore the lessons that could be learnt by other developing countries from Ghana’s PFM reforms experiences. These lessons included the need to: (a) undergird any PFM reform with a comprehensive PFM reform strategy; (b) undertake a legal and institutional reforms of the key PFM institutions; (c) assess the strengths and weaknesses of those reforms using PFM performance evaluation tools such as PEFA framework; and (d) move beyond reforms to consolidation and sustainability.
Keywords: Public financial management, public expenditure and financial accountability (PEFA), reforms, consolidation, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10931003 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data
Authors: Sarabjeet Kaur Kochhar
Abstract:
With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14601002 Household Indebtedness Risks in the Czech Republic
Authors: Jindřiška Šedová
Abstract:
In the past 20 years the economy of the Czech Republic has experienced substantial changes. In the 1990s the development was affected by the transformation which sought to establish the right conditions for privatization and creation of elementary market relations. In the last decade the characteristic elements such as private ownership and corresponding institutional framework have been strengthened. This development was marked by the accession of the Czech Republic to the EU. The Czech Republic is striving to reduce the difference between its level of economic development and the quality of institutional framework in comparison with other developed countries. The process of finding the adequate solutions has been hampered by the negative impact of the world financial crisis on the Czech Republic and the standard of living of its inhabitants. This contribution seeks to address the question of whether and to which extent the economic development of the transitive Czech economy is affected by the change in behaviour of households and their tendency to consumption, i.e. in the sense of reduction or increase in demand for goods and services. It aims to verify whether the increasing trend of household indebtedness and decreasing trend of saving pose a significant risk in the Czech Republic. At a general level the analysis aims to contribute to finding an answer to the question of whether the debt increase of Czech households is connected to the risk of "eating through" the borrowed money and whether Czech households risk falling into a debt trap. In addition to household indebtedness risks in the Czech Republic the analysis will focus on identification of specifics of the transformation phase of the Czech economy in comparison with the EU countries, or selected OECD countries.Keywords: household indebtedness, household consumption, credits, financial literacy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011001 A Microcontroller Implementation of Model Predictive Control
Authors: Amira Abbes Kheriji, Faouzi Bouani, Mekki Ksouri, Mohamed Ben Ahmed
Abstract:
Model Predictive Control (MPC) is increasingly being proposed for real time applications and embedded systems. However comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprises as well as a transformer of organizations and markets. Recently, advances in microelectronics and software allow such technique to be implemented in embedded systems. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In fact in this paper, we propose an efficient framework for implementation of Generalized Predictive Control (GPC) in the performed STM32 microcontroller. The STM32 keil starter kit based on a JTAG interface and the STM32 board was used to implement the proposed GPC firmware. Besides the GPC, the PID anti windup algorithm was also implemented using Keil development tools designed for ARM processor-based microcontroller devices and working with C/Cµ langage. A performances comparison study was done between both firmwares. This performances study show good execution speed and low computational burden. These results encourage to develop simple predictive algorithms to be programmed in industrial standard hardware. The main features of the proposed framework are illustrated through two examples and compared with the anti windup PID controller.Keywords: Embedded systems, Model Predictive Control, microcontroller, Keil tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55041000 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595999 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm
Authors: Yesubai Rubavathi Charles, Ravi Ramraj
Abstract:
In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823998 PeliGRIFF: A Parallel DEM-DLM/FD Method for DNS of Particulate Flows with Collisions
Authors: Anthony Wachs, Guillaume Vinay, Gilles Ferrer, Jacques Kouakou, Calin Dan, Laurence Girolami
Abstract:
An original Direct Numerical Simulation (DNS) method to tackle the problem of particulate flows at moderate to high concentration and finite Reynolds number is presented. Our method is built on the framework established by Glowinski and his coworkers [1] in the sense that we use their Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) formulation and their operator-splitting idea but differs in the treatment of particle collisions. The novelty of our contribution relies on replacing the simple artificial repulsive force based collision model usually employed in the literature by an efficient Discrete Element Method (DEM) granular solver. The use of our DEM solver enables us to consider particles of arbitrary shape (at least convex) and to account for actual contacts, in the sense that particles actually touch each other, in contrast with the simple repulsive force based collision model. We recently upgraded our serial code, GRIFF 1 [2], to full MPI capabilities. Our new code, PeliGRIFF 2, is developed under the framework of the full MPI open source platform PELICANS [3]. The new MPI capabilities of PeliGRIFF open new perspectives in the study of particulate flows and significantly increase the number of particles that can be considered in a full DNS approach: O(100000) in 2D and O(10000) in 3D. Results on the 2D/3D sedimentation/fluidization of isometric polygonal/polyedral particles with collisions are presented.
Keywords: Particulate flow, distributed lagrange multiplier/fictitious domain method, discrete element method, polygonal shape, sedimentation, distributed computing, MPI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130997 Variational Iteration Method for the Solution of Boundary Value Problems
Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.
Abstract:
In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.
Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107996 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181995 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.
Keywords: Solar access analysis, energy building design tools, urban planning, solar potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071994 Selection Standards for National Teams: Theory and Practice
Authors: Alexey Kulik
Abstract:
This article deals with selection standards for national sport teams. The author examines the legal framework for selection criteria and suggests using the most honest criteria.
Keywords: National teams, Standards of forming teams, Selection standards, Sport legislations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392993 AIS Design based on Service - Oriented Architecture SOA
Authors: Yan-Fang Niu
Abstract:
In view of current IT integration development of SOA, this paper examines AIS design based on SOA, including information sources collection, accounting business process integration and real-time financial reports. The main objective of this exploratory paper is to facilitate AIS research combing the Web Service, which is often ignored in accounting and computer research. It provides a conceptual framework that clarifies the interdependency between SOA and AIS, and also presents the major SOA functions in different areas of AIS
Keywords: AIS, SOA, Web Service
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202992 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809991 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs
Authors: Verónica Díaz
Abstract:
A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.
Keywords: Cartesian graphs, higher education, movement modeling, problem solving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178990 Tourism Policy Challenges in Post-Soviet Georgia
Authors: Merab Khokhobaia
Abstract:
Within the framework of this research, the regulatory documents, which are in force in relation to this industry, were analyzed. The main attention is turned to their modernization and necessity of their compliance with European standards. It is a current issue to direct the efforts of state policy on support of business by implementing infrastructural projects, as well as by development of human resources, which may be possible by supporting the relevant higher and vocational studying-educational programs.
Keywords: Regional Development, Tourism Industry, Tourism Policy, Transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617989 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain
Authors: Suman Senapati, Goutam Saha
Abstract:
Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653988 E-Learning Management Systems General Framework
Authors: Hamed Fawareh
Abstract:
The recent development in learning technologies leads to emerge many learning management systems (LMS). In this study, we concentrate on the specifications and characteristics of LMSs. Furthermore, this paper emphasizes on the feature of e-learning management systems. The features take on the account main indicators to assist and evaluate the quality of e-learning systems. The proposed indicators based of ten dimensions.
Keywords: E-Learning, System Requirement, Social Requirement, Learning Management System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523987 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.
Keywords: Emotion, emotion-enhanced memory, learning technique, STEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016986 The Politics of Foreign Direct Investment for Socio-Economic Development in Nigeria: An Assessment of the Fourth Republic Strategies (1999 - 2014)
Authors: Muritala Babatunde Hassan
Abstract:
In the contemporary global political economy, foreign direct investment (FDI) is gaining currency on daily basis. Notably, the end of the Cold War has brought about the dominance of neoliberal ideology with its mantra of private-sector-led economy. As such, nation-states now see FDI attraction as an important element in their approach to national development. Governments and policy makers are preoccupying themselves with unraveling the best strategies to not only attract more FDI but also to attain the desired socio-economic development status. In Nigeria, the perceived development potentials of FDI have brought about aggressive hunt for foreign investors, most especially since transition to civilian rule in May 1999. Series of liberal and market oriented strategies are being adopted not only to attract foreign investors but largely to stimulate private sector participation in the economy. It is on this premise that this study interrogates the politics of FDI attraction for domestic development in Nigeria between 1999 and 2014, with the ultimate aim of examining the nexus between regime type and the ability of a state to attract and benefit from FDI. Building its analysis within the framework of institutional utilitarianism, the study posits that the essential FDI strategies for achieving the greatest happiness for the greatest number of Nigerians are political not economic. Both content analysis and descriptive survey methodology were employed in carrying out the study. Content analysis involves desk review of literatures that culminated in the development of the study’s conceptual and theoretical framework of analysis. The study finds no significant relationship between transition to democracy and FDI inflows in Nigeria, as most of the attracted investments during the period of the study were market and resource seeking as was the case during the military regime, thereby contributing minimally to the socio-economic development of the country. It is also found that the country placed much emphasis on liberalization and incentives for FDI attraction at the neglect of improving the domestic investment environment. Consequently, poor state of infrastructure, weak institutional capability and insecurity were identified as the major factors seriously hindering the success of Nigeria in exploiting FDI for domestic development. Given the reality of the currency of FDI as a vector of economic globalization and that Nigeria is trailing the line of private-sector-led approach to development, it is recommended that emphasis should be placed on those measures aimed at improving the infrastructural facilities, building solid institutional framework, enhancing skill and technological transfer and coordinating FDI promotion activities by different agencies and at different levels of government.
Keywords: Foreign capital, politics, socio-economic development, FDI attraction strategies, Redemocratization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907985 Towards a New Era of Sustainability in the Automotive Industry: Strategic Human Resource Management and Green Technology Innovation
Authors: Reihaneh Montazeri Shatouri, Rosmini Omar, Kunio Igusa
Abstract:
Although automotive industry has brought different beneficiaries to human life, it is being pointed out as one of the major cause of global air pollution which resulted in climate change, smog, green house gases (GHGs), and human diseases by many reasons. Since auto industry is one of the largest consumers of fossil fuels, the realization of green innovations is becoming a crucial choice to meet the challenges towards sustainable development. Recently, many auto manufacturers have embarked on green technology initiatives to gain a competitive advantage in the global market; however, innovative manufacturing systems and technologies can enhance operational performance only if the human resource management is in place to elicit the motivation of the employees and develop their organizational expertise. No organization can perform at peak levels unless each employee is committed to the company goals and works as an effective team member. Strategic human resource practices are the primary means by which firms can shape the skills, attitudes, and behavior of individuals to align with the business strategic objectives. This study investigates on the comprehensive approach of multiple advanced technology innovations and human resource management at Toyota Motor Corporation as the market leader of full hybrid technology in the automotive industry. Then, HRM framework of the company is described and three sets of human resource practices that support the innovation-oriented HR system, presented. Finally, a conceptual framework for innovativeness in green technology in automotive industry by applying a deliberate strategic HR management system and knowledge management with the intervening factors of organizational culture, knowledge application and knowledge sharing is proposed.
Keywords: Automotive Industry, Green Technology, Innovation, Strategic Human Resource Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5262984 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144983 Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India
Authors: K. Shimola, M. Krishnaveni
Abstract:
This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.
Keywords: Adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126982 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs
Authors: Sawarni Hasibuan, Juliza Hidayati
Abstract:
Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.Keywords: Cleaner production innovation, creativity, SMEs Batik, sustainability supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880981 Data Oriented Model of Image: as a Framework for Image Processing
Authors: A. Habibizad Navin, A. Sadighi, M. Naghian Fesharaki, M. Mirnia, M. Teshnelab, R. Keshmiri
Abstract:
This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.
Keywords: Data oriented modelling, image, clustering, segmentation, classification, ADBT and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802