Search results for: Chinese event detection
1539 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth
Authors: Hatem Hajri, Mohamed-Cherif Rahal
Abstract:
Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9611538 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.
Keywords: Bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081537 An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501536 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography
Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz
Abstract:
Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.
Keywords: Ring recognition, edge detection, X-ray computed tomography, dendrochronology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8061535 A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.Keywords: Fast Pattern Detection, Neural Networks, Modified Cross Correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451534 An Efficient Obstacle Detection Algorithm Using Colour and Texture
Authors: Chau Nguyen Viet, Ian Marshall
Abstract:
This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.
Keywords: Colour, texture, classification, obstacle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231533 Islanding Detection Techniques for Synchronous Distributed Generation
Authors: Bharti B. Parmar, Vivek J. Pandya
Abstract:
The issue of unintentional islanding detection of grid connected synchronous distributed generation (SDG) remains the most challenging task faced by the distributed generation (DG) industry as SDG is highly capable of prolonging an island. This paper gives an insight of anti-islanding detection techniques mainly applied for SDG. Different techniques conclude that it is challenging to point out a generic method for a distinct purpose as the application of particular practice depends on nature of the end use and system dependent elements. Also, the setup and operational cost affect the selection of anti-islanding technique to achieve minimal compromising between cost and system quality. A test bench is created in the MATLAB/Simulink® to demonstrate the results of a 33 kV system. The results are highly satisfactory and they are according to the current practices.
Keywords: Synchronous distributed generation, islanding, point of common coupling, loss of grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631532 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.
Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211531 An Overview of Islanding Detection Methods in Photovoltaic Systems
Authors: Wei Yee Teoh, Chee Wei Tan
Abstract:
The issue of unintentional islanding in PV grid interconnection still remains as a challenge in grid-connected photovoltaic (PV) systems. This paper discusses the overview of popularly used anti-islanding detection methods, practically applied in PV grid-connected systems. Anti-islanding methods generally can be classified into four major groups, which include passive methods, active methods, hybrid methods and communication base methods. Active methods have been the preferred detection technique over the years due to very small non-detected zone (NDZ) in small scale distribution generation. Passive method is comparatively simpler than active method in terms of circuitry and operations. However, it suffers from large NDZ that significantly reduces its performance. Communication base methods inherit the advantages of active and passive methods with reduced drawbacks. Hybrid method which evolved from the combination of both active and passive methods has been proven to achieve accurate anti-islanding detection by many researchers. For each of the studied anti-islanding methods, the operation analysis is described while the advantages and disadvantages are compared and discussed. It is difficult to pinpoint a generic method for a specific application, because most of the methods discussed are governed by the nature of application and system dependent elements. This study concludes that the setup and operation cost is the vital factor for anti-islanding method selection in order to achieve minimal compromising between cost and system quality.Keywords: Active method, hybrid method, islanding detection, passive method, photovoltaic (PV), utility method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97591530 A Timed and Colored Petri Nets for Modeling and Verifying Cloud System Elasticity
Authors: W. Louhichi, M.Berrima, N. Ben Rajeb Robbana
Abstract:
Elasticity is the essential property of cloud computing. As the name suggests, it constitutes the ability of a cloud system to adjust resource provisioning in relation to fluctuating workloads. There are two types of elasticity operations, vertical and horizontal. In this work, we are interested in horizontal scaling, which is ensured by two mechanisms; scaling in and scaling out. Following the sizing of the system, we can adopt scaling in the event of over-supply and scaling out in the event of under-supply. In this paper, we propose a formal model, based on temporized and colored Petri nets (TdCPNs), for the modeling of the duplication and the removal of a virtual machine from a server. This model is based on formal Petri Nets (PNs) modeling language. The proposed models are edited, verified, and simulated with two examples implemented in colored Petri nets (CPNs)tools, which is a modeling tool for colored and timed PNs.
Keywords: Cloud computing, elasticity, elasticity controller, petri nets, scaling in, scaling out.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6461529 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.
Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10991528 Change Detector Combination in Remotely Sensed Images Using Fuzzy Integral
Authors: H. Nemmour, Y. Chibani
Abstract:
Decision fusion is one of hot research topics in classification area, which aims to achieve the best possible performance for the task at hand. In this paper, we investigate the usefulness of this concept to improve change detection accuracy in remote sensing. Thereby, outputs of two fuzzy change detectors based respectively on simultaneous and comparative analysis of multitemporal data are fused by using fuzzy integral operators. This method fuses the objective evidences produced by the change detectors with respect to fuzzy measures that express the difference of performance between them. The proposed fusion framework is evaluated in comparison with some ordinary fuzzy aggregation operators. Experiments carried out on two SPOT images showed that the fuzzy integral was the best performing. It improves the change detection accuracy while attempting to equalize the accuracy rate in both change and no change classes.Keywords: change detection, decision fusion, fuzzy logic, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161527 Managing the Cloud Procurement Process – Findings from a Case Study
Authors: Andreas Jede, Frank Teuteberg
Abstract:
Cloud computing (CC) has already gained overall appreciation in research and practice. Whereas the willingness to integrate cloud services in various IT environments is still unbroken, the previous CC procurement processes run mostly in an unorganized and non-standardized way. In practice, a sufficiently specific, yet applicable business process for the important acquisition phase is often lacking. And research does not appropriately remedy this deficiency yet. Therefore, this paper introduces a field-tested approach for CC procurement. Based on an extensive literature review and augmented by expert interviews, we designed a model that is validated and further refined through an in-depth real-life case study. For the detailed process description, we apply the event-driven process chain notation (EPC). The gained valuable insights into the case study may help CC research to shift to a more socio-technical area. For practice, next to giving useful organizational instructions we will provide extended checklists and lessons learned.
Keywords: Cloud Procurement Process, IT-Organization, Event-driven Process Chain, In-depth Case Study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771526 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9661525 Optimizing Spatial Trend Detection By Artificial Immune Systems
Authors: M. Derakhshanfar, B. Minaei-Bidgoli
Abstract:
Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461524 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls
Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier GarcĂa Villalba
Abstract:
With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.Keywords: Android, information security, intrusion detection systems, malware, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991523 Detection and Pose Estimation of People in Images
Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi
Abstract:
Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23001522 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.
Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13411521 An Automatic Sleep Spindle Detector based on WT, STFT and WMSD
Authors: J. Costa, M. Ortigueira, A. Batista, T. Paiva
Abstract:
Sleep spindles are the most interesting hallmark of stage 2 sleep EEG. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Sleep Spindles are also promising objective indicators for neurodegenerative disorders. Visual spindle scoring however is a tedious workload. In this paper three different approaches are used for the automatic detection of sleep spindles: Short Time Fourier Transform, Wavelet Transform and Wave Morphology for Spindle Detection. In order to improve the results, a combination of the three detectors is presented and comparison with human expert scorers is performed. The best performance is obtained with a combination of the three algorithms which resulted in a sensitivity and specificity of 94% when compared to human expert scorers.Keywords: EEG, Short Time Fourier Transform, Sleep Spindles, Wave Morphology for Spindle Detection, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23791520 SVM-Based Detection of SAR Images in Partially Developed Speckle Noise
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images.Keywords: Least Square-Support Vector Machine, SyntheticAperture Radar. Partially Developed Speckle, Multi-Look Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371519 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks
Authors: Deepali Virmani , Satbir Jain
Abstract:
To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14881518 Emotions and Message Sharing on the Chinese Microblog
Authors: Yungeng Xie, Cong Liu, Yi Liu, Xuanao Wan
Abstract:
The study aims to explore microblog users’ emotion expression and sharing behaviors on the Chinese microblog (Weibo). The first theme of study analyzed whether microblog emotions impact readers’ message sharing behaviors, specifically, how the strength of emotion (positive and negative) in microblog messages facilitate/inhibit readers’ sharing behaviors. The second theme compared the differences among the three types of microblog users (i.e., verified enterprise users, verified individual users and unverified users) in terms of their profiles and microblog behaviors. A total of 7114 microblog messages about 24 hot public events in China were sampled from Sina Weibo. The first study results show that strength of negative emotions that microblog messages carry significantly increase the possibility of the message being shared. The second study results indicate that there are significant differences across the three types of users in terms of their emotion expression and its influence on microblog behaviors.
Keywords: Microblog, emotion expression, information diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131517 On the Representation of Actuator Faults Diagnosis and Systems Invertibility
Authors: Sallem F., Dahhou B., Kamoun A.
Abstract:
In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.
Keywords: Actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21481516 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.
Keywords: Moving object detection, histogram of oriented gradient histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12331515 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks
Authors: T.P. Sharma
Abstract:
Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15501514 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261513 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7501512 Loop Back Connected Component Labeling Algorithm and Its Implementation in Detecting Face
Authors: A. Rakhmadi, M. S. M. Rahim, A. Bade, H. Haron, I. M. Amin
Abstract:
In this study, a Loop Back Algorithm for component connected labeling for detecting objects in a digital image is presented. The approach is using loop back connected component labeling algorithm that helps the system to distinguish the object detected according to their label. Deferent than whole window scanning technique, this technique reduces the searching time for locating the object by focusing on the suspected object based on certain features defined. In this study, the approach was also implemented for a face detection system. Face detection system is becoming interesting research since there are many devices or systems that require detecting the face for certain purposes. The input can be from still image or videos, therefore the sub process of this system has to be simple, efficient and accurate to give a good result.Keywords: Image processing, connected components labeling, face detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22991511 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition
Authors: Hazem M. El-Bakry
Abstract:
Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371510 Conflation Methodology Applied to Flood Recovery
Authors: E. L. Suarez, D. E. Meeroff, Y. Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.
Keywords: Community resilience, conflation, flood risk, nuisance flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138