
 

 

  
Abstract—Sleep spindles are the most interesting hallmark of 

stage 2 sleep EEG. Their accurate identification in a 
polysomnographic signal is essential for sleep professionals to help 
them mark Stage 2 sleep. Sleep Spindles are also promising objective 
indicators for neurodegenerative disorders.  Visual spindle scoring 
however is a tedious workload. In this paper three different 
approaches are used for the automatic detection of sleep spindles: 
Short Time Fourier Transform, Wavelet Transform and Wave 
Morphology for Spindle Detection. In order to improve the results, a 
combination of the three detectors is presented and comparison with 
human expert scorers is performed. The best performance is obtained 
with a combination of the three algorithms which resulted in a 
sensitivity and specificity of 94% when compared to human expert 
scorers. 
 

Keywords—EEG, Short Time Fourier Transform, Sleep Spindles, 
Wave Morphology for Spindle Detection, Wavelet Transform.  

I. INTRODUCTION 
LEEP spindles (SS) are particular EEG patterns which 
occur during the sleep cycle. They resemble an AM/FM 

sinusoid with center frequency in the band 11 to 15 Hz and 
they are used as one of the features to classify the sleep stages 
[1]. Sleep spindles are promising objective indicators for 
neurodegenerative disorders [2]. In this work, three methods 
are used to find SS, Short Time Fourier Transform (STFT), 
Wavelet Transform (WT) Wave Morphology for Spindle 
Detection (WMSD). These methods are then combined in the 
pursuit of a better SS detector. In section 2, a brief description 
of Sleep Spindles and their characteristics is presented. A 
survey in the state of the art regarding SS detection is 
presented. The methods are then explained and basic statistical 
measures used to compare algorithms’ performances are 
presented. In section 3, results of applying the SS detectors to 
a EEG signal, previously scored by two human experts are 
presented. Conclusions are made about differences in 
performance from the three algorithms. 

It is shown that the proposed algorithms perform well in the 
Sleep Spindle detection task. 
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II.  METHODS 

A. Sleep Spindles (SS)  
It is commonly referred in literature that sleep spindles are 

the most interesting hallmark of stage 2 sleep 
electroencephalograms (EEG) [1]. A sleep spindle is a burst of 
brain activity visible in an EEG and it consists of 11-15 Hz 
waves with duration between 0.5s and 2s in healthy adults, 
they are bilateral and synchronous in their appearance, with 
amplitude up to 30 µV (Fig. 1). The spindle is characterized by 
progressively increasing, then gradually decreasing amplitude, 
which gives the waveform its characteristic name [3]. It  is  
now accepted  that  sleep  spindles  are  originated  in  the  
thalamus and  can  be  recorded  as  potential  changes  at  the  
cortical surface [4]. 

 

Fig. 1 Sleep Spindle in EEG signal 
 

Sleep EEG measures seem promising as objective 
indicators in neurodegenerative disorders, including dementia, 
where sleep changes appear to be an exaggeration of changes 
that come normally with aging. 

B. State of the Art  
There are several publications related to sleep spindle 

automatic detection. Most of them make use of two or more 
detection algorithms, which combined provide best results. It 
is not easy to compare results, as authors tend to publish 
different statistical measures of the performances. The use of 
sensitivity, specificity and accuracy are however the most 
common, but, rarely the authors publish all these statistical 
measures. 
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An  approach  for  the  automatic  detection  of  SS  based  
upon  the  Teager Energy Operator  and  Wavelet Transform  
was presented  in  [5]. These two features were integrated into 
a spindle detection algorithm with a reported accuracy of 
93.7%, without reference to sensibility or specificity. 

In [6], STFT and Wavelet Transform were used. After the 
detection, Teager Operator is applied to determine the duration 
of the spindle. True localization is reported to be 92%, without 
references to other statistical measures of the performance. 

An automated spindle detection using AR modeling for 
feature extraction was proposed in [7].  Multilayer Perceptron 
and Support Vector Machine are used as classifiers for 
comparison. Performances were reported as 93.6% for the 
MLP and 94.4% for the SVM classifiers.  

In [8] an artificial neural network based on the Multi-Layer 
Perceptron architecture was used for detecting SS in band-pass 
filtered EEG’s. Following optimum classification schemes, the 
sensitivity of the network ranges from 79.2% to 87.5% and 
false positive rate ranges from 3.8% to 15.5%.  

A SS detection algorithm based on decision tree was 
proposed in [9]. After analyzing the EEG waveform, the 
decision algorithm determines the location of sleep spindle by 
evaluating the outputs of three different methods namely: 
STFT, Multiple Signal Classification algorithm and Teager 
Energy Operator. A 96.17% sensitivity and 95.54% specificity 
is reported. 

Results from 7 studies are compiled in [10], sensitivity rates 
range from 62.9% to 92.9% (7 studies), specificity ranges 
from 81.2% to 89.7% (2 studies) and false positive rate 
(FPR=1-specificity) ranges from 3.4% to 58.4% (5 studies). 
The best results were obtained by the authors, using 
Empirical-Mode Decomposition (EMD), Hilbert–Huang 
transform, and application of fuzzy logic. They claim a 
sensitivity of 88.2%, a specificity of 89.7%. 

C. Short Time Fourier Transform (STFT) 
The use of STFT is commonly used in signal processing 

[11].  
The STFT of a discrete signal is: 
 

ሾ݊ሿሽݔሼܶܨܶܵ ൌ ܺሺ݉, ߱ሻ ൌ ෍ ሾ݊ሿ߱ሾ݊ݔ െ ݉ሿ݁ି௝ఠ௡.
ஶ

௡ୀିஶ

 
 
(1) 

The magnitude squared of the STFT yields the spectrogram 
of the signal: 

 
ሾ݊ሿሽݔሼ݉ܽݎ݃݋ݎݐܿ݁݌ݏ ൌ |ܺሺ߬, ߱ሻ|ଶ  

(2) 
An example of detection of SS using STFT and 

corresponding spectrogram can be seen in Fig. 2. It is clear the 
presence of peak in the spectrogram (t=0.5s and f=15Hz), 
corresponding to a SS. 

  

 
Fig. 2 Example of SS detection using STFT 

D. Wavelet Transform (WT) 
In this method, the detection of  sleep  spindles  employ  the 

continuous wavelet transform of EEG signal x(t): 
 

,ሺܽݔܹܶܥ  ܾሻ ൌ 1

√|ܽ|
׬ כ ሻݐሺݔ ቀݐെܾ

ܽ
ቁ∞

െ∞   ,,ݐ݀
(3) 

where Ѱ (t) is called the ‘mother wavelet’, the asterisk denotes 
complex conjugate, whereas  a and b are scaling parameters 
[12]. The corresponding normalized wavelet power is defined 
by: 
,ሺܽݓ  ܾሻ ൌ ܹଶሺܽ, ܾሻ/ߪଶ, (4) 

and σ  is the standard deviation of the EEG segment used.  
Complex Morlet WT was used. In Fig. 3 a SS is detected 

using the normalized wavelet power (dashed line). 

Fig. 3 Example of SS detection using WT 
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E. Wave Morphology for Spindle Detection (WMSD) 
The WMSD algorithm proposed in this paper is based on 

the definition of Sleep Spindle by Rechtschaffen and Kales 
[13] which states: 

 
“The presence of a sleep spindle should not be defined unless 
it is of at least 0.5sec duration, i.e., one should be able to 
count 6 or 7 distinct waves within the half-second period.  
Because the term “sleep spindle” has been widely used in 
sleep research, this term will be retained. The term should be 
used only to describe activity between 12 and 14 cps.” 
 
The WMSD algorithm was for the first time published by the 
authors in [14].The implemented algorithm consists of: 

a) Detection of peaks in the signal (maxima and minima), 
based on a defined threshold, thus, eliminating small peaks; 

b) Determination of extreme to extreme time distance and 
conversion to frequency: 
 ݂ ൌ

1
ܶ

; 
 

(5) 
 

c) Verification if the determined frequencies lie in the SS 
range (11-15 Hz); 

d) If there are more than 12 consecutive peaks (6 maxima 
and 6 minima) in the SS frequency band a spindle is marked.  

The whole process mimics the visual detection mechanism. 
An example of a SS detected using this algorithm can be seen 
in Fig. 4, where the SS is marked between t=0.6s and t=1.1s. 
The peaks above the threshold limit are marked with a ‘*’, the 
ones which also satisfy the frequency criteria are marked with 
a ‘•’. 

 
Fig. 4 Example of SS detection using WMSD 

F. Mixed detection using WT, STFT and WMSD, the ALL 
algorithm 

In this work, after the SS has been detected using WT, 
STFT and WMSD algorithms, mixed results were computed. 

In this approach, we use a vector to characterize the signal 
(same length as the sampled signal).This vector defines each 
point as belonging to a SS or not. The mixed result is 
computed, i.e., a point is considered belonging to a SS if it is 
marked as SS in WT, STFT and WMSD algorithms.  

 

Finally, if there are not enough consecutive points marked 
as belonging to a SS, in order to last at least 0.5 seconds, they 
are considered as non-spindle. We now address it as the ALL 
algorithm. 

G. Statistical Measures 
In order to assess the validity of results, the algorithm was 

applied to the data and results compared with visually scored 
signal. Measures were taken, namely true positive (TP), false 
positive (FP), true negative (TN) and false negative (FN) 
events.  

A TP result is counted when a sample was scored as a 
spindle by the automatic method and the expert 
simultaneously. A TN result is set when a correct decision of 
absence of spindle was made.  

If the automatic result indicated a presence of spindle and 
there was no spindle visual scoring, a FP result was counted. 
On the opposite, if the output indicated no spindle whereas the 
expert scored some, a FN result was counted. [15]  

Sensitivity, specificity and accuracy are defined as: 
ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ  ൌ ܰܧܵ ൌ

ܶܲ
ܶܲ ൅ ܰܨ

, 
 

 

(6) 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ  ൌ ܧܲܵ ൌ
ܶܰ

ܲܨ ൅ ܶܰ
, 

 

 

(7) 

ݕܿܽݎݑܿܿܣ  ൌ ܥܥܣ ൌ
ܶܲ ൅ ܶܰ

ܶ ܲ ൅ ܶ ܰ ൅ ܨ ܲ ൅ ܨ ܰ
. 

 

(8) 

In [16] a comparison of the threshold choice is presented 
based on a EEG signal partly scored by a human expert. In this 
work, however, several values have been used in order to 
obtain representative curves of the sensitivity vs specificity 
relationship. 

III. RESULTS 
This study makes use of a sample representative of human 

sleep, obtained from healthy male volunteers: 18 sets 
comprising 3 minutes each. Briefly, all polysomnograms were 
performed in an 18-channel analog NIHON-KOHDEN 
polygraph with 12 bit digital conversion (STELLATEs 
RHYTHM V10.0), recorded with 128Hz resolution [17]. 

Sleep was visually scored according to RK [13].  From a 
screen display of C3-A2 channel, two specialists scored all 
concordant spindles, using the RK68 spindle definition.  

The detection methods were applied with a combination of 
threshold parameters for the STFT, WMSD and WT 
algorithm. In the STFT case, the threshold value corresponds 
to the cumulative value of peaks in the spectrogram. In the 
WMSD algorithm, a point is considered a maximum peak if it 
has the maximal value, and was preceded (to the left) by a 
value lower than the threshold defined. The Normalized 
Wavelet Power amplitude is used as threshold in the WT case.  

In 
STFT, WMSD, WT and ALL algorithms. It can be seen that 
there is a trade-off between these two measures, the higher the 
sensibility, the lower the specificity and vice-versa. 

Fig. 5, Sensitivity x Specificity curves are shown for the 
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Fig. 5 Sensitivity x Specificity curves 

 
For a better performance comparison, threshold values have 

been chosen so that sensitivity equals specificity. For the 
STFT algorithm a sensitivity of 90.9% and a specificity of 
90.9% were achieved. Using the WMSD a sensitivity of 
91.5% (specificity of 91.5%) was achieved. The WT 
performed at a sensitivity and specificity of 92.8%. The ALL 
algorithm produced, as expected, the best results with a 
sensitivity and specificity of 94.0%. 

IV. CONCLUSION 
The overall performance of the implemented methods is 

good; changing the thresholds can lead to sensitivity next to 
100%. However, high values of sensitivity lead to a decrease 
in specificity. This low value in specificity is due to higher 
values in False Positives. Both STFT and WMSD produced 
good results in sleep spindle detection. Sensibility and 
specificity for these algorithms is around 91%. The WT 
performed slightly better around 93% sensitivity and 
specificity. When the combination of the previous detection 
algorithms was used, detection performance improved to a 
sensitivity and specificity of 94%. The combination of 
methods lead to better results by eliminating some False 
Positives, not compromising the True Positives; thus 
improving specificity with minor changes in sensitivity.  
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