Search results for: Bi-directional associative memory (BAM) neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2772

Search results for: Bi-directional associative memory (BAM) neural networks

2322 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: Segmentation, color-texture, neural networks, fractal, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
2321 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
2320 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung

Abstract:

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
2319 A Novel Technique for Ferroresonance Identification in Distribution Networks

Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor

Abstract:

Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.

Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
2318 Representing Uncertainty in Computer-Generated Forces

Authors: Ruibiao J. Guo, Brad Cain, Pierre Meunier

Abstract:

The Integrated Performance Modelling Environment (IPME) is a powerful simulation engine for task simulation and performance analysis. However, it has no high level cognition such as memory and reasoning for complex simulation. This article introduces a knowledge representation and reasoning scheme that can accommodate uncertainty in simulations of military personnel with IPME. This approach demonstrates how advanced reasoning models that support similarity-based associative process, rule-based abstract process, multiple reasoning methods and real-time interaction can be integrated with conventional task network modelling to provide greater functionality and flexibility when modelling operator performance.

Keywords: Computer-Generated Forces, Human Behaviour Representation, IPME, Modelling and Simulation, Uncertainty Reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
2317 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory organization, parallel processors, serial code, vector processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
2316 Computational Networks for Knowledge Representation

Authors: Nhon Van Do

Abstract:

In the artificial intelligence field, knowledge representation and reasoning are important areas for intelligent systems, especially knowledge base systems and expert systems. Knowledge representation Methods has an important role in designing the systems. There have been many models for knowledge such as semantic networks, conceptual graphs, and neural networks. These models are useful tools to design intelligent systems. However, they are not suitable to represent knowledge in the domains of reality applications. In this paper, new models for knowledge representation called computational networks will be presented. They have been used in designing some knowledge base systems in education for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the program for solving problems about alternating current in physics.

Keywords: Artificial intelligence, artificial intelligence and education, knowledge engineering, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
2315 Odor Discrimination Using Neural Decoding of Olfactory Bulbs in Rats

Authors: K.-J. You, H.J. Lee, Y. Lang, C. Im, C.S. Koh, H.-C. Shin

Abstract:

This paper presents a novel method for inferring the odor based on neural activities observed from rats- main olfactory bulbs. Multi-channel extra-cellular single unit recordings were done by micro-wire electrodes (tungsten, 50μm, 32 channels) implanted in the mitral/tufted cell layers of the main olfactory bulb of anesthetized rats to obtain neural responses to various odors. Neural response as a key feature was measured by substraction of neural firing rate before stimulus from after. For odor inference, we have developed a decoding method based on the maximum likelihood (ML) estimation. The results have shown that the average decoding accuracy is about 100.0%, 96.0%, 84.0%, and 100.0% with four rats, respectively. This work has profound implications for a novel brain-machine interface system for odor inference.

Keywords: biomedical signal processing, neural engineering, olfactory, neural decoding, BMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
2314 Discrimination of Seismic Signals Using Artificial Neural Networks

Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim

Abstract:

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2313 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

Authors: Yogesh Aggarwal, Paratibha Aggarwal

Abstract:

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
2312 Improving Air Temperature Prediction with Artificial Neural Networks

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
2311 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing

Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
2310 Neural Network Implementation Using FPGA: Issues and Application

Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan

Abstract:

.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented

Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381
2309 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)

Authors: Kandarpa Kumar Sarma

Abstract:

The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.

Keywords: Assamese, Feature, Recurrent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2308 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique

Authors: Aziah Khamis, H. Shareef

Abstract:

The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.

Keywords: Classification, Islanding detection, Neural network, Phase space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
2307 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
2306 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
2305 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
2304 Analysis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises

Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov

Abstract:

For optimal unbiased filter as mean-square and in the case of functioning anomalous noises in the observation memory channel, we have proved insensitivity of filter to inaccurate knowledge of the anomalous noise intensity matrix and its equivalence to truncated filter plotted only by non anomalous components of an observation vector.

Keywords: Mathematical expectation, filtration, anomalous noise, memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
2303 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Authors: S. Farzi

Abstract:

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.

Keywords: GMDH, GPNN, GA, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2302 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2301 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
2300 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
2299 Encoding and Compressing Data for Decreasing Number of Switches in Baseline Networks

Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh, Hasan Asil, Amir Asil

Abstract:

This method decrease usage power (expenditure) in networks on chips (NOC). This method data coding for data transferring in order to reduces expenditure. This method uses data compression reduces the size. Expenditure calculation in NOC occurs inside of NOC based on grown models and transitive activities in entry ports. The goal of simulating is to weigh expenditure for encoding, decoding and compressing in Baseline networks and reduction of switches in this type of networks. KeywordsNetworks on chip, Compression, Encoding, Baseline networks, Banyan networks.

Keywords: Networks on chip, Compression, Encoding, Baseline networks, Banyan networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
2298 Identification of Aircraft Gas Turbine Engines Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
2297 Identification of Aircraft Gas Turbine Engine's Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
2296 A Literature Survey of Neural Network Applications for Shunt Active Power Filters

Authors: S. Janpong, K-L. Areerak, K-N. Areerak

Abstract:

This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP).

Keywords: Active power filter, neural network, harmonic distortion, harmonic detection and compensation, non-linear load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3036
2295 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
2294 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
2293 The Preservation of Cultural Heritage: Continuity and Memory

Authors: Andrey R. Khazbulatov, Moldir Nurpeiis

Abstract:

Contemporary science and technologies largely widen the gap between the spiritual and rational of the society. Industrial and technological breakthroughs might radically affect most processes in the society, thus losing the cultural heritage. The thinkers recognized the dangers of the decadence in the first place. In the present article the ways of preserving cultural heritage have been investigated. Memory has always been a necessary condition for selfidentification, - continuity is based on this. The authors have supported the hypothesis that continuity and ethnic memory are the very mechanisms that preserve cultural heritage. Such problemformulating will facilitate another, new look at the material, spiritual and arts spheres of the cultural heritage of numerous ethnic groups. The fundamental works by major European and Kazakh scientists have been taken as a basis for the research done.

Keywords: Continuity, cultural heritage, ethnic memory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147