Search results for: performance availability
1463 Enhancement in a Mechatronic Aluminum Beverage Cans Recycling Machine
Authors: H. M. El-Zomor, M. Hany
Abstract:
Recycling of aluminum beverage cans is an important issue due to its economic and environmental effect. One of the significant factors in aluminum cans recycling process is the transportation cost from the landfill space. An automatic compression baler (ACB) machine has been designed and built to densify the aluminum beverage cans. It has been constructed using numerous fabricated components. Two types of control methodology have been introduced in this ACB machine to achieve its goal. The first is a semi-automatic system, and the second is a mechatronic system by using a Programmable Logic Control (PLC). The effect of single and double pre-compression for the beverage cans have been evaluated by using the PLC control. Comparisons have been performed between the two types of control methodologies by operating this ACB machine in different working conditions. The double pre-compression in PLC control proves that there is an enhancement in the ACB performance by 133% greater than the direct compression in the semi-automatic control. In addition, the percentage of the reduction ratio in volume reaches 77%, and the compaction ratio reaches about four times of the initial volume.
Keywords: Aluminum can recycling, Fully automatic machine, Hydraulic system control, Multi-compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25861462 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm
Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda
Abstract:
This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25061461 Performance Evaluation of the Post-Installed Anchor for Sign Structure
Authors: Wooyoung Jung, Minho Kwon, Jinsup Kim, Buseog Ju
Abstract:
Numerous experimental tests for post-installed anchor systems drilled in hardened concrete were conducted in order to estimate pull-out and shear strength accounting for uncertainties such as torque ratios, embedment depths and different diameters in demands. In this study, the strength of the systems was significantly changed by the effect of those three uncertainties during pull-out experimental tests, whereas the shear strength of the systems was not affected by torque ratios. It was also shown that concrete cone failure or damage mechanism was generally investigated during and after pull-out tests and in shear strength tests, mostly the anchor systems were failed prior to failure of primary structural system. Furthermore, 3D finite element model for the anchor systems was created by ABAQUS for the numerical analysis. The verification of finite element model was identical till the failure points to the load-displacement relationship specified by the experimental tests.
Keywords: Post-installed anchor, Pull-out test, Shear test, Torque , ABAQUS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27241460 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12371459 Performance Evaluation of Purely Mechanical Wireless In-Mould Sensor for Injection Moulding
Authors: Florian Müller, Christian Kukla, Thomas Lucyshyn, Clemens Holzer
Abstract:
In this paper, the influencing parameters of a novel purely mechanical wireless in-mould injection moulding sensor were investigated. The sensor is capable of detecting the melt front at predefined locations inside the mould. The sensor comprises a movable pin which acts as the sensor element generating structure-borne sound triggered by the passing melt front. Due to the sensor design, melt pressure is the driving force. For pressure level measurement during pin movement a pressure transducer located at the same position as the movable pin. By deriving a mathematical model for the mechanical movement, dominant process parameters could be investigated towards their impact on the melt front detection characteristic. It was found that the sensor is not affected by the investigated parameters enabling it for reliable melt front detection. In addition, it could be proved that the novel sensor is in comparable range to conventional melt front detection sensors.
Keywords: Injection Moulding, In-Mould Sensor, Structure-Borne Sound, Wireless Sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20721458 Numerical Investigation of the Thermal Separation in a Vortex Tube
Authors: N.Pourmahmoud, S.Akhesmeh
Abstract:
This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.
Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24311457 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization
Authors: Sasadhar Bera, Indrajit Mukherjee
Abstract:
Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481456 The Effect of Glass Thickness on Stress in Vacuum Glazing
Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro
Abstract:
Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.Keywords: ABAQUS, glazing, stress, vacuum glazing, vacuum insulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8581455 Volume Density of Power of Multivector Electric Machine
Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev
Abstract:
Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.
Keywords: Electric machine, electric motor, electromagnet, efficiency of electric motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10391454 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System
Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain
Abstract:
This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18191453 The Role of Ga to Improve AlN-Nucleation Layer for Al0.1Ga0.9N/Si(111)
Authors: AlNPhannee Saengkaew, Armin Dadgar, Juergen Blaesing, Thomas Hempel, Sakuntam Sanorpim, Chanchana Thanachayanont, Visittapong Yordsri, Watcharee Rattanasakulthong, Alois Krost
Abstract:
Group-III nitride material as particularly AlxGa1-xN is one of promising optoelectronic materials to require for shortwavelength devices. To achieve the high-quality AlxGa1-xN films for a high performance of such devices, AlN-nucleation layers are the important factor. To improve the AlN-nucleation layers with a variation of Ga-addition, XRD measurements were conducted to analyze the crystalline quality of the subsequent Al0.1Ga0.9N with the minimum ω-FWHMs of (0002) and (10-10) reflections of 425 arcsec and 750 arcsec, respectively. SEM and AFM measurements were performed to observe the surface morphology and TEM measurements to identify the microstructures and orientations. Results showed that the optimized Ga-atoms in the Al(Ga)Nnucleation layers improved the surface diffusion to form moreuniform crystallites in structure and size, better alignment of each crystallite, and better homogeneity of island distribution. This, hence, improves the orientation of epilayers on the Si-surface and finally improves the crystalline quality and reduces the residual strain of subsequent Al0.1Ga0.9N layers.Keywords: AlGaN, UV-LEDs, seed layers, AFM, TEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15791452 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models
Authors: P. Srinivas, P. V. N. Prasad
Abstract:
Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands.
The DTC of SRM is analyzed by two methods. In one method, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.
Keywords: Direct Toque Control, Simplified Torque Equation, Finite Element Analysis, Torque Ripple.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35041451 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method
Authors: S. Qaedi, S. Seyedtabaii
Abstract:
Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27421450 Pulsation Suppression Device Design for Reciprocating Compressor
Authors: Amin Almasi
Abstract:
Design and evaluation of reciprocating compressors should include a pulsation study. The object is to ensure that predicted pulsation levels meet guidelines to limit vibration, shaking forces, noise, associated pressure drops, horsepower losses and fabrication cost and time to acceptable levels. This paper explains procedures and recommendations to select and size pulsation suppression devices to obtain optimum arrangement in terms of pulsation, vibration, shaking forces, performance, reliability, safety, operation, maintenance and commercial conditions. Model and advanced formulations for pulsation study are presented. The effect of the full fluid dynamic model on the prediction of pulsation waves and resulting frequency spectrum distributions are discussed. Advanced and optimum methods of controlling pulsations are highlighted. Useful recommendations and guidelines for pulsation control, piping pulsation analysis, pulsation vessel design, shaking forces, low pressure drop orifices, pulsation study report and devices to mitigate pulsation and shaking problems are discussed.Keywords: Pulsation, Reciprocating Compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88411449 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.
Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291448 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks
Authors: Yogesh Aggarwal, Paratibha Aggarwal
Abstract:
The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22291447 Simulation of Thermal Storage Phase Change Material in Buildings
Authors: Samira Haghshenaskashani, Hadi Pasdarshahri
Abstract:
One of the potential and effective ways of storing thermal energy in buildings is the integration of brick with phase change materials (PCMs). This paper presents a two-dimensional model for simulating and analyzing of PCM in order to minimize energy consumption in the buildings. The numerical approach has been used with the real weather data of a selected city of Iran (Tehran). Two kinds of brick integrated PCM are investigated and compared base on outdoor weather conditions and the amount of energy consumption. The results show a significant reduction in maximum entering heat flux to building about 32.8% depending on PCM quantity. The results are analyzed by various temperature contour plots. The contour plots illustrated the time dependent mechanism of entering heat flux for a brick integrated with PCM. Further analysis is developed to investigate the effect of PCM location on the inlet heat flux. The results demonstrated that to achieve maximum performance of PCM it is better to locate PCM near the outdoor.Keywords: Building, Energy Storage, PCM, Phase Change Material
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901446 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case
Authors: Ahmed Badawi
Abstract:
This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19541445 A New Reliability Based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. So, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.
Keywords: Base station, channel, GA, Pareto-optimal, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19141444 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.
Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921443 Towards a Load Balancing Framework for an SMS–Based Service Invocation Environment
Authors: Mandla T. Nene, Edgar.Jembere, Matthew O. Adigun, Themba Shezi, Siyabonga S. Cebekhulu
Abstract:
The drastic increase in the usage of SMS technology has led service providers to seek for a solution that enable users of mobile devices to access services through SMSs. This has resulted in the proposal of solutions towards SMS-based service invocation in service oriented environments. However, the dynamic nature of service-oriented environments coupled with sudden load peaks generated by service request, poses performance challenges to infrastructures for supporting SMS-based service invocation. To address this problem we adopt load balancing techniques. A load balancing model with adaptive load balancing and load monitoring mechanisms as its key constructs is proposed. The load balancing model then led to realization of Least Loaded Load Balancing Framework (LLLBF). Evaluation of LLLBF benchmarked with round robin (RR) scheme on the queuing approach showed LLLBF outperformed RR in terms of response time and throughput. However, LLLBF achieved better result in the cost of high processing power.Keywords: SMS (Short Message Service), LLLBF (Least Loaded Load Balancing Framework), Service Oriented Computing (SOC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461442 Porous Carbon Nanoparticles Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
Oxygen Reduction Reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.Keywords: Electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371441 Robust Design of Power System Stabilizers Using Adaptive Genetic Algorithms
Authors: H. Alkhatib, J. Duveau
Abstract:
Genetic algorithms (GAs) have been widely used for global optimization problems. The GA performance depends highly on the choice of the search space for each parameter to be optimized. Often, this choice is a problem-based experience. The search space being a set of potential solutions may contain the global optimum and/or other local optimums. A bad choice of this search space results in poor solutions. In this paper, our approach consists in extending the search space boundaries during the GA optimization, only when it is required. This leads to more diversification of GA population by new solutions that were not available with fixed search space boundaries. So, these dynamic search spaces can improve the GA optimization performances. The proposed approach is applied to power system stabilizer optimization for multimachine power system (16-generator and 68-bus). The obtained results are evaluated and compared with those obtained by ordinary GAs. Eigenvalue analysis and nonlinear system simulation results show the effectiveness of the proposed approach to damp out the electromechanical oscillation and enhance the global system stability.Keywords: Genetic Algorithms, Multiobjective Optimization, Power System Stabilizer, Small Signal Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271440 The Public Law Studies: Relationship between Accountability, Environmental Education and Smart Cities
Authors: Aline Alves Bandeira, Luís Pedro Lima, Maria Cecília de Paula Silva, Paulo Henrique de Viveiros Tavares
Abstract:
Nowadays, the study of public policies regarding management efficiency is essential. Public policies are about what governments do or do not do, being an area that has grown worldwide, contributing through the knowledge of technologies and methodologies that monitor and evaluate the performance of public administrators. The information published on official government websites needs to provide for transparency and responsiveness of managers. Thus, transparency is a primordial factor for the execution of accountability, providing, in this way, services to the citizen with the expansion of transparent, efficient, democratic information and that value administrative eco-efficiency. The ecologically balanced management of a Smart City must optimize environmental education, building a fairer society, which brings about equality in the use of quality environmental resources. Smart Cities add value in the construction of public management, enabling interaction between people, enhancing environmental education and the practical applicability of administrative eco-efficiency, fostering economic development and improving the quality of life.
Keywords: Accountability, environmental education, new public administration, smart cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6291439 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach
Authors: M. Zamurad Shah, M. Kemal Özgören, Raza Samar
Abstract:
This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.
Keywords: Unmanned Aerial Vehicles, Sliding mode control, 3D Guidance, Path following, trajectory tracking, nonlinear sliding manifolds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27051438 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor
Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh
Abstract:
Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.
Keywords: Cantilever beam, electrical current measurement, forced excitation, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10791437 The Supply Chain Management and Supply Chain Responsiveness in the Competitiveness of the Agrofood Sector: An Econometric Analysis
Authors: Alma Lucero Ortiz, Mario Gómez
Abstract:
The purpose of this article is to conduct a theoretical and empirical study in order to analyze how the Supply Chain Management (SCM) and Supply Chain Responsiveness (SCR) affects the competitive advantage of the agrofood sector in 2017, in particular, the exporting companies of berries in Mexico. This work is presented in two parts, as a first part is developed a theoretical analysis of the main studies to measure the variables subject to the study. Subsequently an empirical study is carried out through field work and to process the data a logical econometric model is performed to be able to evaluate the effect of the SCM and SCR on the competitive advantage in the companies exporting berries. The results suggest that the SCM has a positive effect on the competitive advantage of the companies under study, so it is necessary to implement greater practices oriented towards a suitable SCM for the companies to achieve a competitive performance. In the case of SCR, it was found that this variable does not have effect on competitive advantage.
Keywords: Competitive advantage, econometric model, supply chain management, supply chain responsiveness, sustained competitive advantage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11931436 Localization of Anatomical Landmarks in Head CT Images for Image to Patient Registration
Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
The use of anatomical landmarks as a basis for image to patient registration is appealing because the registration may be performed retrospectively. We have previously proposed the use of two anatomical soft tissue landmarks of the head, the canthus (corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), as a registration basis for an automated CT image to patient registration system, and described their localization in patient space using close range photogrammetry. In this paper, the automatic localization of these landmarks in CT images, based on their curvature saliency and using a rule based system that incorporates prior knowledge of their characteristics, is described. Existing approaches to landmark localization in CT images are predominantly semi-automatic and primarily for localizing internal landmarks. To validate our approach, the positions of the landmarks localized automatically and manually in near isotropic CT images of 102 patients were compared. The average difference was 1.2mm (std = 0.9mm, max = 4.5mm) for the medial canthus and 0.8mm (std = 0.6mm, max = 2.6mm) for the tragus. The medial canthus and tragus can be automatically localized in CT images, with performance comparable to manual localization, based on the approach presented.
Keywords: Anatomical Landmarks, CT, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33301435 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application
Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman
Abstract:
Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44861434 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems
Authors: Ebregbe David, Deng Weibo
Abstract:
The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.
Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920