Search results for: combined classifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1119

Search results for: combined classifier

699 Better Perception of Low Resolution Images Using Wavelet Interpolation Techniques

Authors: Tarun Gulati, Kapil Gupta, Dushyant Gupta

Abstract:

High resolution images are always desired as they contain the more information and they can better represent the original data. So, to convert the low resolution image into high resolution interpolation is done. The quality of such high resolution image depends on the interpolation function and is assessed in terms of sharpness of image. This paper focuses on Wavelet based Interpolation Techniques in which an input image is divided into subbands. Each subband is processed separately and finally combined the processed subbandsto get the super resolution image. 

Keywords: SWT, DWTSR, DWTSWT, DWCWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
698 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: M. Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: land use/land cover, random forest, Landsat-8 OLI, Sentinel-2A MSI, Corine land cover

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
697 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: Semantic links, data mining, linked data, SKOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
696 Expansion of A Finit Size Partially Ionized Laser-Plasma

Authors: Mohamed Fawzi Mahboub, Mourad Djebli

Abstract:

The expansion mechanism of a partially ionized plasma produced by laser interaction with solid target (copper) is studied. For this purpose we use a hydrodynamical model which includes a source term combined with Saha's equation. The obtained self-similar solution in the limit of quasi-neutrality shows that the expansion, at the earlier stage, is driven by the combination of thermal pressure and electrostatic potential. They are of the same magnitude. The initial ionized fraction and the temperature are the leading parameters of the expanding profiles,

Keywords: expansion, quasi-neutral, laser-ablated plasma, self- similar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
695 ASC – A Stream Cipher with Built – In MAC Functionality

Authors: Kai-Thorsten Wirt

Abstract:

In this paper we present the design of a new encryption scheme. The scheme we propose is a very exible encryption and authentication primitive. We build this scheme on two relatively new design principles: t-functions and fast pseudo hadamard transforms. We recapitulate the theory behind these principles and analyze their security properties and efficiency. In more detail we propose a streamcipher which outputs a message authentication tag along with theencrypted data stream with only little overhead. Moreover we proposesecurity-speed tradeoffs. Our scheme is faster than other comparablet-function based designs while offering the same security level.

Keywords: Cryptography, Combined Primitives, Stream Cipher, MAC, T-Function, FPHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
694 The Open Knowledge Kernel

Authors: Adrian Perreau de Pinninck, David Dupplaw, Spyros Kotoulas, Ronny Siebes

Abstract:

Web services are pieces of software that can be invoked via a standardized protocol. They can be combined via formalized taskflow languages. The Open Knowledge system is a fully distributed system using P2P technology, that allows users to publish the setaskflows, and programmers to register their web services or publish implementations of them, for the roles described in these workflows.Besides this, the system offers the functionality to select a peer that could coordinate such an interaction model and inform web services when it is their 'turn'. In this paper we describe the architecture and implementation of the Open Knowledge Kernel which provides the core functionality of the Open Knowledge system.

Keywords: Architecture, P2P, Web Services, Semantic Web

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
693 Face Recognition: A Literature Review

Authors: A. S. Tolba, A.H. El-Baz, A.A. El-Harby

Abstract:

The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results.

Keywords: Combined classifiers, face recognition, graph matching, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7724
692 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
691 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
690 Antiinflammatory and Wound Healing Activity of Sedum Essential Oils Growing in Kazakhstan

Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina

Abstract:

The article represents the results of clinical researches of composite herbal medicinal product based on essential oils of Sedum plants growing in Kazakhstan in commercial reserves at the territory of Kazakhstan. The results of comparative analysis are represented in obstetric-gynecologic practice during combined therapy for postnatal complications, inflammatory infiltrates in the area of surgical wounds including wounds after caesarean section.

Keywords: Anti-inflammatory, bioactive substances, essential oils, isolation, Sedum L., wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
689 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
688 Composite Relevance Feedback for Image Retrieval

Authors: Pushpa B. Patil, Manesh B. Kokare

Abstract:

This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.

Keywords: Image retrieval, relevance feedback, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
687 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: A. S. Adesuyi, Z. Munch

Abstract:

This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.

Keywords: Change detection, Land cover, NDVI, time-series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
686 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: Data mining, digital libraries, digital preservation, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
685 A Multimodal Approach for Biometric Authentication with Multiple Classifiers

Authors: Sorin Soviany, Cristina Soviany, Mariana Jurian

Abstract:

The paper presents a multimodal approach for biometric authentication, based on multiple classifiers. The proposed solution uses a post-classification biometric fusion method in which the biometric data classifiers outputs are combined in order to improve the overall biometric system performance by decreasing the classification error rates. The paper shows also the biometric recognition task improvement by means of a carefully feature selection, as much as not all of the feature vectors components support the accuracy improvement.

Keywords: biometric fusion, multiple classifiers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
684 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: Attainable region, dimethyl ether synthesis, mass balance, optimal reaction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
683 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen

Abstract:

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
682 The Low-carbon Transition Exploration of China's Traditional Manufacturing Industries

Authors: Heng Ma

Abstract:

Aiming at the problems existing in low-carbon technology of Chinese manufacturing industries, such as irrational energy structure, lack of technological innovation, financial constraints, this paper puts forward the suggestion that the leading role of the government is combined with the roles of enterprises and market. That is, through increasing the governmental funding the adjustment of the industrial structures and enhancement of the legal supervision are supported. Technological innovation is accelerated by the enterprises, and the carbon trading will be promoted so as to trigger the low-carbon revolution in Chinese manufacturing field.

Keywords: Low-carbon economy, traditional manufacturing industry, industrial structure, carbon emission reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
681 Simulation of Inverter Fed Induction Motor Drive with LabVIEW

Authors: R. Gunabalan, S. Immanuel Prabakaran, J. Reegan, S. Ganesh

Abstract:

This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated.

Keywords: Induction motor, LabVIEW, State model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8576
680 Extended Deductive Databases with Uncertain Information

Authors: Daniel Stamate

Abstract:

The paper presents an approach for handling uncertain information in deductive databases using multivalued logics. Uncertainty means that database facts may be assigned logical values other than the conventional ones - true and false. The logical values represent various degrees of truth, which may be combined and propagated by applying the database rules. A corresponding multivalued database semantics is defined. We show that it extends successful conventional semantics as the well-founded semantics, and has a polynomial time data complexity.

Keywords: Reasoning under uncertainty, multivalued logics, deductive databases, logic programs, multivalued semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
679 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
678 An Improved Algorithm of SPIHT based on the Human Visual Characteristics

Authors: Meng Wang, Qi-rui Han

Abstract:

Because of excellent properties, people has paid more attention to SPIHI algorithm, which is based on the traditional wavelet transformation theory, but it also has its shortcomings. Combined the progress in the present wavelet domain and the human's visual characteristics, we propose an improved algorithm based on human visual characteristics of SPIHT in the base of analysis of SPIHI algorithm. The experiment indicated that the coding speed and quality has been enhanced well compared to the original SPIHT algorithm, moreover improved the quality of the transmission cut off.

Keywords: Lifted wavelet transform, SPIHT, Human Visual Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
677 Issues in Travel Demand Forecasting

Authors: Huey-Kuo Chen

Abstract:

Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper

Keywords: Travel choices, B algorithm, entropy maximization, dynamic traffic assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
676 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: Time-series clustering, feature extraction, hoax prediction, geospatial events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
675 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
674 Synthesis, Characterization and PL Properties of Cds Nanoparticles Confined within a Functionalized SBA-15 Mesoprous

Authors: Azam Anaraki Firooz, Ali Reza Mahjoub, Reza Donyaei Ziba

Abstract:

A simple and dexterous in situ method was introduced to load CdS nanocrystals into organofunctionalized mesoporous, which used an ion-exchange method. The products were extensively characterized by combined spectroscopic methods. X- ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) demonstrated both the maintenance of pore symmetry (space group p6mm) of SBA-15 and the presence of CdS nanocrystals with uniform sizes of about 6 - 8 nm inside the functionalized SBA-15 channels. These mesoporous silica-supported CdS composites showed room temperature photoluminescence properties with a blue shift, indicating the quantum size effect of nanocrystalline CdS.

Keywords: Semiconductors, luminescence, mesoporous material, CdS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
673 Development of Blower for Air Management System of Fuel Cell Modules

Authors: Joo-Han Kim, Jung-Moo Seo, Ha Gyeong Sung, Se Hyun Rhyu

Abstract:

This study presents a blower for air management system of fuel cell modules. A blower is composed of BLDC motor and impeller. Magnetic equivalent circuit model and finite element analysis are used to design the motor, and an improved structure is considered to reduce a mechanical loss induced from bearing units. Finally, air blower system combined with the motor and an impeller is manufactured and output properties, such as an air pressure and an amount of flowing air, are measured. Through the experimental results, a validity of the simulated one is confirmed.

Keywords: Fuel cell modules, BLDC motor, Impeller, Air management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
672 Self-Organizing Maps in Evolutionary Approachmeant for Dimensioning Routes to the Demand

Authors: J.-C. Créput, A. Koukam, A. Hajjam

Abstract:

We present a non standard Euclidean vehicle routing problem adding a level of clustering, and we revisit the use of self-organizing maps as a tool which naturally handles such problems. We present how they can be used as a main operator into an evolutionary algorithm to address two conflicting objectives of route length and distance from customers to bus stops minimization and to deal with capacity constraints. We apply the approach to a real-life case of combined clustering and vehicle routing for the transportation of the 780 employees of an enterprise. Basing upon a geographic information system we discuss the influence of road infrastructures on the solutions generated.

Keywords: Evolutionary algorithm, self-organizing map, clustering and vehicle routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
671 A Combined Neural Network Approach to Soccer Player Prediction

Authors: Wenbin Zhang, Hantian Wu, Jian Tang

Abstract:

An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.

Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3763
670 Dual-Task – Immersion in the Interactions of Simultaneously Performed Tasks

Authors: M. Liebherr, P. Schubert, S. Kersten, C. Dietz, L. Franz, C. T. Haas

Abstract:

With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of taskinterrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematisation of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system.

Keywords: Dual-task, interference, cognition, measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092