
 

 

 
Abstract—Spatial-explicit and up-to-date land use/land cover 

information is fundamental for spatial planning, land management, 
sustainable development, and sound decision-making. In the last 
decade, many satellite-derived land cover products at different 
spatial, spectral, and temporal resolutions have been developed, such 
as the European Copernicus Land Cover product. However, more 
efficient and detailed information for land use/land cover is required 
at the regional or local scale. A typical Mediterranean basin with a 
complex landscape comprised of various forest types, crops, artificial 
surfaces, and wetlands was selected to test and develop our approach. 
In this study, we investigate the improvement of Copernicus Land 
Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-
based classification based on all available existing geospatial data 
(Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We 
examined and compared the performance of the Random Forest 
classifier for land use/land cover mapping. In total, 10 land use/land 
cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. 
A comparison of the overall classification accuracies for 2018 shows 
that Landsat 8 classification accuracy was slightly higher than 
Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land 
use/land cover types of CLC2018, even within a heterogeneous area, 
can be successfully mapped and updated according to CLC 
nomenclature. Future research should be oriented toward integrating 
spatiotemporal information from seasonal bands and spectral indexes 
in the classification process. 

 
Keywords—Land use/land cover, random forest, Landsat-8 OLI, 

Sentinel-2A MSI, Corine Land Cover.  

I. INTRODUCTION 

AND use/land cover earth observation mapping and 
thematic products are key baseline data for monitoring 

land changes, natural biophysical reserves, and data inputs for 
spatially explicit models of climate change, crop production, 
and ecosystem resources. Remarkably, in 2015 [21], United 
Nations Agenda 2030 on sustainable development stressed the 
importance of new earth observations and geospatial data to 
promote effective monitoring of its targets and goals. 

Over the last decade, free access on medium-high spatial 
resolution satellite imagery, such as Landsat and Sentinel, 
facilitates the development of new satellite-based applications 
and the production of up-to-date improved geospatial land 
cover data products at global, national, regional and local 
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scales. 
In Europe, CORINE Land Cover (CLC) provides 

harmonized and comprehensive maps of land cover and land 
use change at European level [1]. The program (nowadays 
“Copernicus Land Cover”) was established by the European 
Commission (EU) in 1990 for facilitating policy making at 
European level. The most recent CLC2018 comprises of 44 
thematic classes at the third level with a minimum mapping 
unit (MMU) of 25 Ha for areal features, and 5 Ha for changes, 
respectively. It is an excellent tool for strategic analysis and 
planning at European level. However, CLC’s thematic content 
comprises a mixture of land cover and land use classes. In 
addition, its MMU serves well the needs of the European 
Union but is not suited for national or regional planning 
activities [2]. Another disadvantage is that CLC approach 
heavily relies on visual interpretation of medium resolution 
satellite imagery and various mapping approaches may be 
employed by national agencies across EU member states [3]. 
Therefore, there is a strong need to develop and test automated 
approaches for mapping land use/land cover at national or 
local level. 

A variety of classification approaches (unsupervised, 
supervised, parametric, non-parametric, object-oriented) have 
been developed and applied to derive land cover information 
with different degree of success. However, per-pixel 
classification approaches remain the most popular in analysis 
of satellite-derived imagery [4]. 

In this study, we apply Random Forest (RF) classifier to 
derive land use/land cover information [5]. RF is a well-
known machine-learning classifier, which has been used and 
tested in different approaches for land use/land cover mapping 
in the last decade (e.g. [6]-[8]). Furthermore, such classifiers 
have already been used in operational initiatives for land cover 
classification (e.g. USGS Land Change Monitoring, 
Assessment, and Projection (LCMAP) [9] and USGS National 
Land Cover Database (NLCD) [10]). However, classification 
accuracy depends on the satellite imagery and the 
classification algorithm being used, and the nature of training 
data as well [11]. 

In supervised approaches, reference data are required to 
characterize the variability of land cover across space and time 
and serve as reference dataset for training and validating 
classification models. Suitable reference data are a 
fundamental requirement in supervised image classification 
[12]. We use existing authoritative geospatial datasets of 
higher accuracy as a pool for training and validation. The 
reference datasets span forestlands, cultivated fields, 
discontinuous urban fabric and built-up areas, road network 
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and natural habitats. The classification scheme of land cover 
classes is based on the third level of CLC nomenclature. Based 
on CLC2018 land use/land cover distribution, a stratified 
random sampling scheme is deployed to train the classifier and 
access classification accuracy. 

In this paper, we explore the relationship between 
classification performance and satellite imagery of different 
spectral and spatial resolutions. The study investigates the 
performance of RF classification using Landsat 8 and 
Sentinel-2A across a heterogeneous Mediterranean watershed, 
based on the same available geospatial reference data. We 
evaluate the mapping approach and address the following 

research questions: 
• How does spatial and spectral resolutions of satellite 

imagery impact classification accuracy, and 
• How does the land use/land cover map compare to the 

CLC2018 Land Cover product? 

II. STUDY AREA 

The study area covers a watershed in Makedonia Region of 
Northern Greece lying East of Thessaloniki city 
(40˚40΄56,49N and 23˚18΄21,15E, WGS84) at a distance of 
41,6 km (Fig. 1).  

 

 

Fig. 1 Location of study area (in blue) 
 

The watershed is surrounded by mountains in the North 
(Mount Krousia) and in the South (Mount Cholomontas), by 
hills in the West and by Rentina Gorge and Kerdylia mount in 
the East. It has a total area of 190.285 Ha. Its elevation ranges 
from 35 m to 1.129 m. At the center of the watershed, there 
are two lakes (Koronia and Volvi). The watershed is drained at 
these lakes and then at sea in the East, through Richios creek, 
which crosses Rentina Gorge. 

The two lakes along with their wetlands have been listed as 
a Wetland of International Importance by the Ramsar 
Convention enforced in 1975 (GR005: 16.388 Ha) [22]. Along 
with the valley of Rentina Gorge, they have been designated 
as Special Conservation Zones within the Natura2000 network 
(GR1220001 and GR1220003: 28.734,90 Ha) in 2017 [23]. 
These protected areas constitute a unique complex of 

interconnected natural ecosystems of lakes, seasonal creeks, 
channels, riparian forests, shrubs, wet meadows and fields  

A third broader zone, designated as Special Protected Zone 
(GR1220009) under Council Directive 79/409/EEC on the 
conservation of wild birds, surrounds the above-protected 
areas. It encompasses an area of 160.628,72 Ha, almost two 
thirds of the total watershed area. A number of important 
habitats for rare and endangered species exist within this zone. 

At the southernmost end of the watershed, on the slopes of 
mount Cholomontas, there is a portion of another protected 
area (GR1270001). It has an area of 15.651,14 Ha dominated 
by beech, oak and pine forests. 

The climate is considered temperate (Csa-Mediterranean 
mainland) with warm and dry summers and cool winters. The 
mean annual temperature is 22,6 °C in summer and about 4 °C 
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in winter. The mean annual rainfall is 593 mm according to 
the records of the last 40 years. 

The main land cover types in the watershed include 
forestlands (coniferous, broadleaf, shrubs and woodlands: 

80.000 Ha), various crops (irrigated and non-irrigated arable 
land, plantations of fruit and olive trees), artificial surfaces 
(small towns, roads and built-up areas), lake water, and 
wetlands (Fig. 2).  

 

 

Fig. 2 CLC2018 Land use/land cover types 
 

According to CLC2018, 49,28% of the watershed is under 
agricultural use while forestlands occupy 42,04%, water 
5,46%, discontinuous urban fabric 1,31%, wetlands 1,17%, 
and developed areas comprise 0,33%. Most of the land under 
agricultural use is used as cropland (93,770 Ha) while the area 
of perennial crops such as fruit and olive tree plantations and 
vineyards as well, account for only 0,65%. Irrigated lands 
cover 14,27% while non-irrigated 50,97% of croplands. 
Approximately 30,98% of forestlands are broadleaf forests, 
2,73% are pine forests, 12,04% mixed forests, 36,80% shrubs 
and 10,10% transitional woodlands. These characteristics 
designate an ideal representative study area to test land cover 
classification performance in a hierarchical framework.  

III. MATERIAL AND METHODS 

A. Satellite Imagery 

Landsat 8 Operational Land Imager (OLI) surface 
reflectance (C2L2) data were obtained from the Unites States 
Geological Survey web site [13]. Two scenes (path/row: 

183/032 and 184/032) required to cover entirely the study 
area. Following a search, cloud free (< 10%) scenes were 
selected for dry summer season. The scenes were acquired in 1 
July 2018 and 22 June 2018 respectively. A mosaic containing 
six bands (blue, green, red, near-infrared (NIR), shortwave 
infrared (SWIR) 1, SWIR 2) was created at the study area 
limits. 

Sentinel-2A MSI imagery was downloaded from the 
Sentinels Scientific Data Hub [14]. Each product consists of 
100x100 sq. km orthorectified granules or tiles. Four cloud 
free (< 10%) granules were required to cover entirely the 
study area (Table I). 

The 13 spectral bands of Sentinel-2A span from the visible 
to SWIR spectrum, at 10 m, 20 m and 60 m spatial resolutions. 
The bands at 60 m spatial resolution are dedicated primarily 
for detecting atmospheric features and were therefore 
excluded from the analysis [15]. A mosaic of ten bands (2-8, 
8A, 11 and 12) was created at the study area limits. In order to 
unify the spatial resolution of the 20 m and 10 m bands, a 

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:17, No:6, 2023 

272International Scholarly and Scientific Research & Innovation 17(6) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

6,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

14
6.

pd
f



 

 

downscale procedure by nearest neighbor interpolation was 
followed, which has been shown to perform very satisfactory 
compared to other approaches [16]. 

 
TABLE I 

SENTINEL-2A SCENES 

Date Granule 

03-07-2018 

L2A_T34TFK_A015820_20180703T092224 

L2A_T34TFL_A015820_20180703T092224 

L2A_T34TGK_A015820_20180703T092224

L2A_T34TGL_A015820_20180703T092224

 

Both Landsat 8 and Sentinel-2A image scenes are spatially 
registered in Universal Transverse Mercator (UTM)/World 
Geodetic System 1984 (WGS84) projection.  

B. Land Cover Reference Data 

We utilized expert knowledge from ancillary data during 
our entire process. We compiled many ancillary data from 
different sources and used them for land use/land cover 
mapping and post processing to increase mapping accuracy 
and consistency. Existing geospatial reference data were 
acquired from Hellenic Cadastre, the largest provider of 
geospatial data in Greece (Table II). 

To identify agricultural fields and especially plantation trees 
(fruit, olive trees, etc.) along with information on irrigated 
lands we used data provided by the Land Parcel Identification 
System (LPIS). LPIS together with the Geospatial Aid 
Application (GSAA) data, tracks individual claims for 
subsidies made by the farmers and provides detailed 
information of agricultural land holdings on the parcel level 
[17]. Both data sources, LPIS and GSAA represent an integral 
element for the implementation of the European Union (EU) 
Common Agricultural Policy (CAP). 

Information regarding habitats was retrieved from national 
Natura2000 database. Through its processing, we gain 
valuable spatial information on the species dominated the 
wetlands within the study area. 

According to Forest Maps, forestlands cover an area of 
94.953 Ha, i.e. 0,49% of the study area. Forest Maps are high-
resolution diagrams depicting forested and non-forested lands, 
according to the current legislative framework of Greece. 

 
TABLE II 

Geospatial Reference Datasets 

a/a Data Source Date Scale 

1. Agricultural fields LPIS 2018 1:5.000 

2. Habitats Natura2000 2017 1: 5.000 

3. Urban zones Forest Map 2021 1:5.000 

4. 
Forest/Non-Forest 

lands 
Forest Map 2021 1:5.000 

5. Forest Stands 
Forest Management 

Plans 
2007-2018 1:20.000

6. 
Built-up areas and road 

network 
Cadastral database 2021 1:1.000 

 

Forest Maps have been developed in the last 20 years by 
Hellenic Cadastre in cooperation with the Greek Forest 
Service. Their production is based on Very-High-Resolution 
(VHR) aerial orthoimagery at spatial resolution of 1 m. Land 

status (forest/ non-forest) and delineation of their respective 
boundaries is based on aerial photo photointerpretation taking 
in account a plethora of data (administrative deeds, judicial 
decisions, historical land distribution diagrams, urban zones, 
and field data) [18]. However, Forest Maps lack information 
on dominant vegetation and species, since their scope of 
works by default was forestlands delineation and land tenure 
determination. This kind of information was acquired by 
processing existing forest management plans at the stand level. 
These plans cover only an area of 33.529 Ha, i.e. 35,31% of 
forestlands according to official Forest Maps and 17,61% of 
the study area. Based on this information, we strongly infer 
that the rest of forestlands are unmanaged. 

Geospatial data regarding road network and discontinued 
built-up areas either industrial or residential were derived from 
current cadastral database.  

All these reference data were processed having the same 
projection with satellite imagery. A learning database was 
developed of existing geospatial data that provides 
information either on land cover type or per parcel. This 
learning database was used both in the selection of training 
data and validation points. 

C. CLC2018 Validation 

The CLC2018 classification scheme at the third level 
identifies 22 classes within the study area (Table III). Our goal 
was to validate the pre-defined classes of CLC2018 in terms 
of their spectral, spatial and thematic accuracy. However, the 
validation of CLC2018 product is a difficult task due to its 
large number of land cover/land cover classes. Moreover, 
there are mixed classes, which consist of spectrally 
heterogeneous land cover types [19]. For instance, classes 
with land use/land cover codes 243 (Land principally occupied 
by agriculture, with significant areas of natural vegetation) and 
324 (Transitional woodland/shrub) cannot be spectrally 
discriminated, based on aerial or satellite data. These classes 
commonly include a mixture of land cover types, such as 
fields, natural grasslands, shrubs and broad-leaved trees with 
different spectral characteristics. In addition, land use/land 
cover type (Pastures, code 231) is rare at Mediterranean 
landscapes. Based on current CLC18 classes, we randomly 
selected points using a gridded stratified random approach, 
proportional to each class area, for 95% accuracy. The total 
sample is 2.779 (Table III). 

Sampling plots were defined at the pixel spatial resolution 
(30 x 30 m) of Landsat imagery. Each random point was 
located at the center of the respective pixel using a gridded 
fishnet on Landsat pixels. Each plot was divided into 3 x 3 
pixels to coincide with Sentinel-2A spatial resolution (10 m). 
Google Earth high-resolution (2019) imagery visual 
interpretation per plot, based on physiognomic attributes 
(color, shape, size, pattern and texture), was applied supported 
by land cover reference data. The procedure resulted in the 
identification of 15 classes (112, 121, 122, 131, 211, 212, 221, 
222, 223, 311, 312, 323, 411, 511 and 512). Based on 
interpretation, each plot was assigned to one of the above 
classes according to CLC nomenclature. The populated 
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samples were added to the learning database. 
 

TABLE III 
CLC2018 LEVEL 3 CLASSES AND SAMPLE DISTRIBUTION 

a/a Code Class Area (Ha) # Sample points 

1 112 Discontinuous urban fabric 2.501,82 37 

2 121 Industrial or commercial zones 443,74 6 

3 122 Road and rail networks and associated land 752,93 11 

4 131 Mineral extraction sites 161,03 2 

6 211 Non-irrigated arable land 47.798,64 699 

7 212 Permanently irrigated arable land 13.381,79 196 

8 221 Vineyards 129,21 2 

9 222 Fruit trees 71,24 1 

10 223 Olive trees 404,69 6 

11 231 Pastures 1.092,00 16 

12 242 Complex cultivation patterns 5.083,44 74 

13 243 Land principally occupied by agriculture 25.811,16 378 

14 311 Broadleaf forest 24.783,86 362 

15 312 Coniferous forest 2.180,58 31 

16 313 Mixed forest 9.630,05 141 

17 321 Natural grasslands 5.878,48 85 

18 323 Sclerophyllous vegetation 29.441,81 431 

19 324 Transitional woodland/shrub 8.082,38 117 

20 331 Beaches, dunes, sand 572,60 8 

21 411 Inland marshes 1.660,55 24 

22 512 Water bodies 10.397,98 152 

Total 190.285,09 2.779 

 

D. Classification 

The supervised classifier RF was applied on the entire study 
area for image classification. The RF classifier has becoming 
increasingly common in land use/land cover applications. All 
procedures in this study were implemented using Erdas 
Imagine 2018.  

We tested the utility of a single-date (summer 2018) 
classification inputs for land use/land cover classification. The 
aforementioned single-date spectral bands from Landsat 8 and 
Sentinel-2A images were used. We acknowledged that many 
other different combinations of spectral and temporal features 
or approaches could be used. We decided to use the 
aforementioned features in our analysis, to access the 
maximum of land cover variability. 

We defined a set of training polygons by random sampling 
70% of the points selected for CLC2018 class validation. 
These data are then used to train supervised classification 
models for most of the important land use/land cover classes. 
The remaining 30% of samples was used for validation. 
Training polygons were manually generated at locations of 
sample plots taking in account that cover types should be 
spectrally homogeneous. For this reason, in many cases, we 
forced to generate training polygons away from sample 
locations. We avoided long and thin training polygons. Small 
polygons tend to be prone to edge effect. Moreover, we 
selected more training polygons in areas where land cover 
reference data were missing or in highly heterogeneous areas, 
in order to increase classification accuracy. The generation of 
training data in areas where land cover reference data are 
missing proved to be an issue. Their selection was based on 
our expert knowledge of the study area in relation to spectral 

data. The total number of pixels used for training was 48.717 
(2,30% of total imagery pixels) for Landsat-8 and 389.099 
(2,04%) for Sentinel-2A. 

Numerous iterations of RF with different combinations of 
land use/land cover classes were implemented on both types of 
imagery. Land cover classification accuracy is affected by the 
number of classes identified. Overall classification accuracy 
decreases by increasing the number of classes [20]. Therefore, 
we removed small area classes, such as 121, 221, 222, and 223 
from Sentinel-2A classifications. The first one along with land 
cover type 112 formed a new class, named as “Artificial 
Surfaces” while the rest appended to 211. We finally 
identified 10 classes on Landsat-8 and 11 classes on Sentinel-
2A imagery. The resulted classified maps are presented in 
Figs. 3 and 4 respectively. 

E. Evaluation 

RF was tested on the entire study area. We evaluated 
classification performance using the Overall Accuracy (OA), 
Producers’ Accuracy (PA), Users’ Accuracy (UA) and Kappa 
Coefficient (KC). In order to provide an accuracy assessment 
of RF classification, we selected a total of 729 validation 
points for Landsat-8 and 812 points for Sentinel-2A. The 
accuracy metrics are presented in Tables IV and V. 

RF produced slightly higher overall accuracy using 
Landsat-8 (82,99%) than Sentinel-2A (80,30%). In case of 
Landsat-8 classification, analyzing the map (Fig. 3) and its 
accuracy metrics (Table IV), the best results were achieved at 
water bodies (512), non-irrigated arable land (211) and needle- 
leaved forest (312). Issues were noticed in two classes: 
permanent crops (fruit trees and olive trees) and emergent 
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vegetation. Both of them are confused with shrubs. These 
classes cover small in size areas and probably the relevant 
training and validation data are not enough. In reference to 
Sentinel-2A classification, the main issue is the class of 
shrubs. It is confused partially with non-irrigated lands where 

these small in size land parcels are surrounded by shrubs. In 
addition, low accuracy is recorded in small area classes of 
emergent vegetation, mineral extraction, and artificial surfaces 
as well.  

 

 

Fig. 3 Land use/land cover map, Landsat-8 OLI SR 
 

TABLE IV 
LANDSAT-8 CLASSIFICATION ACCURACY METRICS 

Class PA UA KC 

Artificial surfaces 85.96% 90.74% 0.8996

Broadleaf forest 78.49% 80.22% 0.7733

Needleleaf forest 91.30% 72.41% 0.7152

Non-irrigated arable land 95.09% 82.01% 0.7683

Permanent crops 22.50% 52.94% 0.5021

Water bodies 100.00% 98.18% 0.9804

Permanently irrigated arable land 83.72% 92.31% 0.9183

Emergent vegetation 66.67% 71.43% 0.7083

Shrubs 82.25% 82.25% 0.7402

Wet meadows 80.00% 80.00% 0.7972

IV. CONCLUSION 

Our approach was to integrate a variety of information from 
higher-accuracy ancillary data with single-date spectral data, 
and implement land cover classification. Our goal was to 
evaluate Landsat-8 and Sentinel-2A imagery RF classification 

in the identification and mapping of land use/land cover types 
under CLC2018 nomenclature. 

 
TABLE V 

SENTINEL-2A CLASSIFICATION ACCURACY METRICS 

Class PA UA KC 

Artificial surfaces 55.17% 59.26% 0.5775

Broadleaf forest 96.46% 72.19% 0.6769

Mineral extraction 56.25% 69.23% 0.6861

Needleleaf forest 92.68% 97.44% 0.9730

Non-irrigated arable land 83.91% 76.84% 0.6587

Water bodies 100.00% 100.00% 1 

Permanently irrigated arable land 91.11% 89.13% 0.8849

Emergent vegetation 64.71% 64.71% 0.6395

Roads 69.57% 76.19% 0.7550

Seasonal streams 62.50% 86.96% 0.8642

Shrubs 65.75% 87.50% 0.8391
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Fig. 4 Land use/land cover map, Sentinel-2A 
 

Based on the results, the achieved overall accuracies are 
acceptable (> 80%), given the study area is highly 
heterogeneous. It comprised of various land use/land cover 
types, which distributed unevenly across the study area. 
Different patterns of agricultural lands (fallow lands, wet 
fields around wetlands and small parcels surrounded by 
shrubs), wetlands (mixed shrubs, mixed high reeds formations 
and shrubs, wet meadows and marshes), and forest types 
(mixed broadleaf/shrubs, degraded broadleaf forests, mixed 
shrub/natural grasslands, and riparian forests) span the entire 
study area. 

The observed confusion was caused by factors, such as: a) 
difficulties to identify the dominant land use/land cover type, 
b) difficulties in determining the exact land use/land cover 
type, and c) lack of VHR reference orthoimagery at the date of 
satellite image acquisition. We point out that available land 
use/land cover reference data cover just a portion of the study 
area. Analyzing the sensor’s effect on classification accuracy, 
better OA results (3%) were obtained for the OLI sensor than 
MSI, despite its lower spatial resolution. Additional 
information is needed to increase the accuracy and consistency 
of land cover mapping. 

We believe that seasonal time-series spectral information 
may improve land use/land cover classification. Our research 
contributes to the efforts of automated CLC evolution in the 
near future. 
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