Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: M. Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: land use/land cover, random forest, Landsat-8 OLI, Sentinel-2A MSI, Corine land cover

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238

References:


[1] Büttner, G., 2014. Corine Land Cover and Land Change Products, In Proc. Land Use and Land Cover Mapping in Europe: Practices and Trends, I. Manakos and M. Braun, (eds.), p. 3, London.
[2] Kuntz, S., E. Schmeer, M. Jochum, and G. Smith, 2014. Towards an European land cover monitoring service and high-resolution layers. In Remote Sensing and Digital Image Processing, vol. 18, pp. 43–52, Springer International Publishing, https://doi.org/10.1007/978-94-007-7969-3_4.
[3] Pflugmacher, D., A. Rabe, M. Peters, and P. Hostert, 2019. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey, Remote Sens. Environ., https://doi.org/10.1016/j.rse.2018.12.00.
[4] Maxwell, A.E., A.T. Warner, and F. Fang, 2018. Implementation of machine-learning classification in remote sensing: An applied review. In Int. J. Remote Sens., https://doi.org/10.1080/01431161.2018.1433343.
[5] Breiman, L., 2001. Random Forests, Kluwer Academic Publishers, 45, 5–32.
[6] Rodriguez-Galiano, F.V., B. Ghimire, J. Rogan, M. Chica-Olmo, and J.P. Rigol-Sanchez, 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogram. Remote Sens. 67:93–104, https://doi:10.1016/j.isprsjprs. 2011.11.002.
[7] Zeferino, B.L., de Souza, T.F.L., do Amaral, H.C., Filho, F.I.E., de Oliveira, S. T., 2020. Does environmental data increase the accuracy of land use and land cover classification? Int. J. Appl. Earth Obs. Geoinf. 91, 102128. https://doi.org/10.1016/j.jag.2020.102128.
[8] Abdulhakim, M. A., 2020. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data, GIScience Remote Sens., 57:1, 1-20, https://doi.org/ 10.1080/15481603.2019.1650447.
[9] Brown, J. F., J. H. Tollerud, P. C. Barber, Q. Zhou, L. J. Dwyer, E. J. Vogelmann, R. T. Loveland, E. C. Woodcock, V. S. Stehman, Z. Zhu, W. B. Pengra, K. Smith, A. J. Horton, G. Xian, F. R. Auch, L.T. Sohl, L. K. Sayler, L. A. Gallant, D. Zelenak, and J. Rover, 2020. Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach, Remote Sens. Environ., 238, https://doi.org/10.1016/j.rse.2019.111356.
[10] Vogelmann, J. E., M.S. Howard, L. Yang, R. C. Larson, K. B. Wylie, and N. Van Driel, 2001. Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thmatic Mapper data and ancillary data sources, ASPRS, vol. 67 (6), 11p.
[11] Stehman, S. V., and G. M. Foody, 2019. Key issues in rigorous accuracy assessment of land cover products, Rem. Sens. Environ. 231, 111199, https://doi.org/10.1016/j.rse.2019.05.018.
[12] Foody, G. M., P. Mahesh, D. Rocchini, X. C. Garzon-Lopez, and L. Bastin, 2016. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data, ISPRS Intern. J. Geo-Inf., 5, 11, 199, https://doi.org/10.3390/ijgi5110199.
[13] Landsat-8 C2L2 images courtesy of the U.S. Geological Survey, http://earthexplorer.usgs.gov.
[14] Copernicus Sentinel data 2018 for Sentinel data, European Space Agency–ESA, produced from ESA remote sensing data, https://scihub.copernicus.eu/dhus/#/home.
[15] Drusch, M., U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, and P. Bargellini, 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services, J. Remote. Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026.
[16] Zheng, H., P. Du, J. Chen, J. Xia, E. Li, Z. Xu, X. Li, and N. Yokoya, 2017. Performance evaluation of downscaling sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Rem. Sens, 9(12), 1274, https://doi.org/10.3390/rs9121274.
[17] Tóth, K. and A. Kucas, 2016. Spatial information in European agricultural data management. Requirements and interoperability supported by a domain model, Land Use Policy, 57, 64–79, http://dx.doi.org/10.1016/j.landusepol.2016.05.023.
[18] Vogiatzis, M., 2008. Cadastral Mapping of Forestlands in Greece, Photogramm. Eng. Remote Sens., 74:39-46, https://doi.org/10.14358/PERS.74.1.39.
[19] Dabija, A., M. Kluczek, B. Zagajewski, E. Raczko, M. Kycko, Al-Sulttani, A.H. A. Tardà, L. Pineda and J. Corbera, 2021. Comparison of support vector machines and random forests for corine land cover mapping, Remote Sens., 13, 1–35, https://doi.org/10.3390/rs13040777.
[20] Thinh, T.V., P.C. Duong, K.N. Nasahara, and T. Tadono, 2019. How does land use/land cover map’s accuracy depend on number of classification classes? SOLA, 15:28-31, https://doi.org/10.2151/ sola.2019-006.
[21] UN, 2015. Transforming our world: the 2030 Agenda for Sustainable Development, https://www.un.org/sustainabledevelopment/development -agenda/.
[22] Ramsar Sites Information Service, https://rsis.ramsar.org/ris/57.
[23] Government Gazette No. B-4432, 2017. Revision of National Catalogue of Sites of European Ecological Network Natura2000, Ministry of Environment and Energy, Athens, Greece.