Search results for: Precipitation Estimation.
787 Improvement Approach on Rotor Time Constant Adaptation with Optimum Flux in IFOC for Induction Machines Drives
Authors: S. Grouni, R. Ibtiouen, M. Kidouche, O. Touhami
Abstract:
Induction machine models used for steady-state and transient analysis require machine parameters that are usually considered design parameters or data. The knowledge of induction machine parameters is very important for Indirect Field Oriented Control (IFOC). A mismatched set of parameters will degrade the response of speed and torque control. This paper presents an improvement approach on rotor time constant adaptation in IFOC for Induction Machines (IM). Our approach tends to improve the estimation accuracy of the fundamental model for flux estimation. Based on the reduced order of the IM model, the rotor fluxes and rotor time constant are estimated using only the stator currents and voltages. This reduced order model offers many advantages for real time identification parameters of the IM.Keywords: Indirect Field Oriented Control (IFOC), InductionMachine (IM), Rotor Time Constant, Parameters ApproachAdaptation. Optimum rotor flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707786 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems
Authors: Ebregbe David, Deng Weibo
Abstract:
The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.
Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918785 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter
Authors: Yi Huang, Clemens Guehmann
Abstract:
In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.Keywords: Asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171784 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880783 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach
Authors: Saowaluck Ukrisdawithid
Abstract:
The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.
Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808782 Optimal Estimation of Supporting-Ground Orientation for Multi-Segment Body Based on Otolith-Canal Fusion
Authors: Karim A. Tahboub
Abstract:
This article discusses the problem of estimating the orientation of inclined ground on which a human subject stands based on information provided by the vestibular system consisting of the otolith and semicircular canals. It is assumed that body segments are not necessarily aligned and thus forming an open kinematic chain. The semicircular canals analogues to a technical gyrometer provide a measure of the angular velocity whereas the otolith analogues to a technical accelerometer provide a measure of the translational acceleration. Two solutions are proposed and discussed. The first is based on a stand-alone Kalman filter that optimally fuses the two measurements based on their dynamic characteristics and their noise properties. In this case, no body dynamic model is needed. In the second solution, a central extended disturbance observer that incorporates a body dynamic model (internal model) is employed. The merits of both solutions are discussed and demonstrated by experimental and simulation results.Keywords: Kalman filter, orientation estimation, otolith-canalfusion, vestibular system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465781 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185780 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes
Authors: Baghdasaryan Marinka
Abstract:
The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.
Keywords: Electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194779 A New Method to Enhance Contrast of Electron Micrograph of Rat Tissues Sections
Authors: Lise P. Labéjof, Raiza S. P. Bizerra, Galileu B. Costa, Thaísa B. dos Santos
Abstract:
This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electron micrograph of tissue sections have an acceptable contrast compared to other methods and present no artifact of precipitation on sections. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic.Keywords: Image quality, Microscopy research, Staining technique, Ultrathin section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603778 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve
Authors: M. Y. Misro, A. Ramli, J. M. Ali
Abstract:
Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use different approach to find the best approximation for the curve so that it will resembles highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first, the Bezier curve estimates the real shape of the curve which can be verified visually. Even though, fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed are acceptable. We verified our result with the manual calculation of the curvature from the map.Keywords: Speed estimation, path constraints, reference trajectory, Bezier curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057777 Stochastic Estimation of Wireless Traffic Parameters
Authors: Somenath Mukherjee, Raj Kumar Samanta, Gautam Sanyal
Abstract:
Different services based on different switching techniques in wireless networks leads to drastic changes in the properties of network traffic. Because of these diversities in services, network traffic is expected to undergo qualitative and quantitative variations. Hence, assumption of traffic characteristics and the prediction of network events become more complex for the wireless networks. In this paper, the traffic characteristics have been studied by collecting traces from the mobile switching centre (MSC). The traces include initiation and termination time, originating node, home station id, foreign station id. Traffic parameters namely, call interarrival and holding times were estimated statistically. The results show that call inter-arrival and distribution time in this wireless network is heavy-tailed and follow gamma distributions. They are asymptotically long-range dependent. It is also found that the call holding times are best fitted with lognormal distribution. Based on these observations, an analytical model for performance estimation is also proposed.
Keywords: Wireless networks, traffic analysis, long-range dependence, heavy-tailed distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897776 Estimation of Human Absorbed Dose Using Compartmental Model
Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri
Abstract:
Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.
Keywords: Compartmental modeling, human absorbed dose, 177Lu-DOTATOC, Syrian rats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926775 Classification of Extreme Ground-Level Ozone Based on Generalized Extreme Value Model for Air Monitoring Station
Authors: Siti Aisyah Zakaria, Nor Azrita Mohd Amin, Noor Fadhilah Ahmad Radi, Nasrul Hamidin
Abstract:
Higher ground-level ozone (GLO) concentration adversely affects human health, vegetations as well as activities in the ecosystem. In Malaysia, most of the analysis on GLO concentration are carried out using the average value of GLO concentration, which refers to the centre of distribution to make a prediction or estimation. However, analysis which focuses on the higher value or extreme value in GLO concentration is rarely explored. Hence, the objective of this study is to classify the tail behaviour of GLO using generalized extreme value (GEV) distribution estimation the return level using the corresponding modelling (Gumbel, Weibull, and Frechet) of GEV distribution. The results show that Weibull distribution which is also known as short tail distribution and considered as having less extreme behaviour is the best-fitted distribution for four selected air monitoring stations in Peninsular Malaysia, namely Larkin, Pelabuhan Kelang, Shah Alam, and Tanjung Malim; while Gumbel distribution which is considered as a medium tail distribution is the best-fitted distribution for Nilai station. The return level of GLO concentration in Shah Alam station is comparatively higher than other stations. Overall, return levels increase with increasing return periods but the increment depends on the type of the tail of GEV distribution’s tail. We conduct this study by using maximum likelihood estimation (MLE) method to estimate the parameters at four selected stations in Peninsular Malaysia. Next, the validation for the fitted block maxima series to GEV distribution is performed using probability plot, quantile plot and likelihood ratio test. Profile likelihood confidence interval is tested to verify the type of GEV distribution. These results are important as a guide for early notification on future extreme ozone events.
Keywords: Extreme value theory, generalized extreme value distribution, ground-level ozone, return level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517774 Modelling of Soil Erosion by Non Conventional Methods
Authors: Ganesh D. Kale, Sheela N. Vadsola
Abstract:
Soil erosion is the most serious problem faced at global and local level. So planning of soil conservation measures has become prominent agenda in the view of water basin managers. To plan for the soil conservation measures, the information on soil erosion is essential. Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation 1 (RUSLE1or RUSLE) and Modified Universal Soil Loss Equation (MUSLE), RUSLE 1.06, RUSLE1.06c, RUSLE2 are most widely used conventional erosion estimation methods. The essential drawbacks of USLE, RUSLE1 equations are that they are based on average annual values of its parameters and so their applicability to small temporal scale is questionable. Also these equations do not estimate runoff generated soil erosion. So applicability of these equations to estimate runoff generated soil erosion is questionable. Data used in formation of USLE, RUSLE1 equations was plot data so its applicability at greater spatial scale needs some scale correction factors to be induced. On the other hand MUSLE is unsuitable for predicting sediment yield of small and large events. Although the new revised forms of USLE like RUSLE 1.06, RUSLE1.06c and RUSLE2 were land use independent and they have almost cleared all the drawbacks in earlier versions like USLE and RUSLE1, they are based on the regional data of specific area and their applicability to other areas having different climate, soil, land use is questionable. These conventional equations are applicable for sheet and rill erosion and unable to predict gully erosion and spatial pattern of rills. So the research was focused on development of nonconventional (other than conventional) methods of soil erosion estimation. When these non-conventional methods are combined with GIS and RS, gives spatial distribution of soil erosion. In the present paper the review of literature on non- conventional methods of soil erosion estimation supported by GIS and RS is presented.Keywords: Conventional methods, GIS, non-conventionalmethods, remote sensing, soil erosion modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4291773 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency
Abstract:
This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).
Keywords: Power plant, Efficiency improvement, Carbon dioxide Emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108772 Low Power and Less Area Architecture for Integer Motion Estimation
Authors: C Hisham, K Komal, Amit K Mishra
Abstract:
Full search block matching algorithm is widely used for hardware implementation of motion estimators in video compression algorithms. In this paper we are proposing a new architecture, which consists of a 2D parallel processing unit and a 1D unit both working in parallel. The proposed architecture reduces both data access power and computational power which are the main causes of power consumption in integer motion estimation. It also completes the operations with nearly the same number of clock cycles as compared to a 2D systolic array architecture. In this work sum of absolute difference (SAD)-the most repeated operation in block matching, is calculated in two steps. The first step is to calculate the SAD for alternate rows by a 2D parallel unit. If the SAD calculated by the parallel unit is less than the stored minimum SAD, the SAD of the remaining rows is calculated by the 1D unit. Early termination, which stops avoidable computations has been achieved with the help of alternate rows method proposed in this paper and by finding a low initial SAD value based on motion vector prediction. Data reuse has been applied to the reference blocks in the same search area which significantly reduced the memory access.
Keywords: Sum of absolute difference, high speed DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492771 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine
Authors: Mohammad Jafarifar
Abstract:
This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294770 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients
Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner
Abstract:
In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.Keywords: Acoustic emission, Damage detection, Shaking table test, Structural health monitoring, High-frequency transients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052769 Wind Load Characteristics in Libya
Authors: Mohammed B. Abohedma, Milad M. Alshebani
Abstract:
Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.Keywords: Ccontour map, return period, wind speed, and zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3704768 Cursor Position Estimation Model for Virtual Touch Screen Using Camera
Authors: Somkiat Wangsiripitak
Abstract:
Virtual touch screen using camera is an ordinary screen which uses a camera to imitate the touch screen by taking a picture of an indicator, e.g., finger, which is laid on the screen, converting the indicator tip position on the picture to the position on the screen, and moving the cursor on the screen to that position. In fact, the indicator is not laid on the screen directly, but it is intervened by the cover at some intervals. In spite of this gap, if the eye-indicator-camera angle is not large, the mapping from the indicator tip positions on the image to the corresponding cursor positions on the screen is not difficult and could be done with a little error. However, the larger the angle is, the bigger the error in the mapping occurs. This paper proposes cursor position estimation model for virtual touch screen using camera which could eliminate this kind of error. The proposed model (i) moves the on-screen pilot cursor to the screen position which locates on the screen at the position just behind the indicator tip when the indicator tip has been looked from the camera position, and then (ii) converts that pilot cursor position to the desirable cursor position (the position on the screen when it has been looked from the user-s eye through the indicator tip) by using the bilinear transformation. Simulation results show the correctness of the estimated cursor position by using the proposed model.
Keywords: Bilinear transformation, cursor position, pilot cursor, virtual touch screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631767 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129766 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose
Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani
Abstract:
Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.
Keywords: Hypromellose, gliclazide, drug release, modified-release tablet, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304765 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: Data Estimation, link data, machine learning, road network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504764 Interference Reduction Technique in Multistage Multiuser Detector for DS-CDMA System
Authors: Lokesh Tharani, R.P.Yadav
Abstract:
This paper presents the results related to the interference reduction technique in multistage multiuser detector for asynchronous DS-CDMA system. To meet the real-time requirements for asynchronous multiuser detection, a bit streaming, cascade architecture is used. An asynchronous multiuser detection involves block-based computations and matrix inversions. The paper covers iterative-based suboptimal schemes that have been studied to decrease the computational complexity, eliminate the need for matrix inversions, decreases the execution time, reduces the memory requirements and uses joint estimation and detection process that gives better performance than the independent parameter estimation method. The stages of the iteration use cascaded and bits processed in a streaming fashion. The simulation has been carried out for asynchronous DS-CDMA system by varying one parameter, i.e., number of users. The simulation result exhibits that system gives optimum bit error rate (BER) at 3rd stage for 15-users.Keywords: Multi-user detection (MUD), multiple accessinterference (MAI), near-far effect, decision feedback detector, successive interference cancellation detector (SIC) and parallelinterference cancellation (PIC) detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762763 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models
Authors: A. Shebani, C. Pislaru
Abstract:
The wear measuring and wear modelling are fundamental issues in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin is made of steel with a tip, positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument. The Talysurf profilometer was used to measure the pin/disc wear scar depth, digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results were implemented by using the Matlab program. This paper focuses on how the alicona can be used for wear measurements and how the neural network can be used for wear estimation.
Keywords: Wear measuring, Wear modelling, Neural Network, Alicona.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4278762 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods
Authors: Autcha Araveeporn
Abstract:
This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.
Keywords: Bayes method, Markov Chain Monte Carlo method, Maximum Likelihood method, normal distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434761 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios
Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya
Abstract:
A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.
Keywords: Bistatic radar cross section, passive radar, propagation losses, radar coverage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296760 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121759 A Study of Mode Choice Model Improvement Considering Age Grouping
Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho
Abstract:
The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.
Keywords: Age grouping, aging, mode choice model, multinomial logit model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614758 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India
Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao
Abstract:
Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario, the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area, which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz., transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.Keywords: Aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3410