Search results for: Multiobjective evolutionary optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1990

Search results for: Multiobjective evolutionary optimization

1570 Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach

Authors: A. K. Al-Othman, Nabil A. Ahmed, A. M. Al-Kandari, H. K. Ebraheem

Abstract:

Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.

Keywords: PWM, AC/AC voltage converters, selectiveharmonic elimination, direct search method, pattern search method, Real-coded Genetic algorithms, evolutionary algorithms andoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
1569 Optimization by Ant Colony Hybryde for the Bin-Packing Problem

Authors: Ben Mohamed Ahemed Mohamed, Yassine Adnan

Abstract:

The problem of bin-packing in two dimensions (2BP) consists in placing a given set of rectangular items in a minimum number of rectangular and identical containers, called bins. This article treats the case of objects with a free orientation of 90Ôùª. We propose an approach of resolution combining optimization by colony of ants (ACO) and the heuristic method IMA to resolve this NP-Hard problem.

Keywords: Ant colony algorithm, bin-packing problem, heuristics methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1568 Design of a Robust Controller for AGC with Combined Intelligence Techniques

Authors: R. N. Patel, S. K. Sinha, R. Prasad

Abstract:

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
1567 Empirical Evaluation of Performance Optimization Techniques Used in Mobile Applications

Authors: Nathar Shah, Bu Kiat Seng

Abstract:

Mobile application development is different from regular application development due to the hardware resource limitations existed in the mobile platforms. In the mobile environment, the application needs to be optimized by the developer to produce optimal software with least overhead. This study discussed about performance optimization techniques that are employed in general application development, and how such techniques are performing on mobile platforms through some empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia C5-03devices. The scope of the work is only confined to mobile platform based on Java Mobile edition architecture. The empirical results showed that techniques such as loop unrolling, dependency chain, and linearized getter and setter performed better by a factor of 3 to 7. Whereas declaration and initialization on the same line or separate line did not improve the performance.

Keywords: Optimization Techniques, Mobile Applications, Performance Evaluation, J2ME, Empirical Experiments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1566 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: Biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
1565 A Method for Improving Dental Crown Fit-Increasing the Robustness

Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.

Abstract:

The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.

Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
1564 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan

Authors: R. Gomathi, D. Sharmila

Abstract:

The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.

Keywords: Semantic web, RDF, Query optimization, Nature inspired algorithms, PSO, SA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
1563 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
1562 Generation Scheduling Optimization of Multi-Hydroplants: A Case Study

Authors: Shuangquan Liu, Jinwen Wang, Dada Wang

Abstract:

A case study of the generation scheduling optimization of the multi-hydroplants on the Yuan River Basin in China is reported in this paper. Concerning the uncertainty of the inflows, the long/mid-term generation scheduling (LMTGS) problem is solved by a stochastic model in which the inflows are considered as stochastic variables. For the short-term generation scheduling (STGS) problem, a constraint violation priority is defined in case not all constraints are satisfied. Provided the stage-wise separable condition and low dimensions, the hydroplant-based operational region schedules (HBORS) problem is solved by dynamic programming (DP). The coordination of LMTGS and STGS is presented as well. The feasibility and the effectiveness of the models and solution methods are verified by the numerical results.

Keywords: generation scheduling, multi-hydroplants, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1561 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha

Abstract:

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
1560 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options

Authors: R.Balamurugan, S.Subramanian

Abstract:

This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.

Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
1559 An Optimization of the New Die Design of Sheet Hydroforming by Taguchi Method

Authors: M. Hosseinzadeh, S. A. Zamani, A. Taheri

Abstract:

During the last few years, several sheet hydroforming processes have been introduced. Despite the advantages of these methods, they have some limitations. Of the processes, the two main ones are the standard hydroforming and hydromechanical deep drawing. A new sheet hydroforming die set was proposed that has the advantages of both processes and eliminates their limitations. In this method, a polyurethane plate was used as a part of the die-set to control the blank holder force. This paper outlines the Taguchi optimization methodology, which is applied to optimize the effective parameters in forming cylindrical cups by the new die set of sheet hydroforming process. The process parameters evaluated in this research are polyurethane hardness, polyurethane thickness, forming pressure path and polyurethane hole diameter. The design of experiments based upon L9 orthogonal arrays by Taguchi was used and analysis of variance (ANOVA) was employed to analyze the effect of these parameters on the forming pressure. The analysis of the results showed that the optimal combination for low forming pressure is harder polyurethane, bigger diameter of polyurethane hole and thinner polyurethane. Finally, the confirmation test was derived based on the optimal combination of parameters and it was shown that the Taguchi method is suitable to examine the optimization process.

Keywords: Sheet Hydroforming, Optimization, Taguchi Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
1558 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
1557 Two-Phase Optimization for Selecting Materialized Views in a Data Warehouse

Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul

Abstract:

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance. Therefore, in this paper, we introduce a new approach aimed to solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that 2PO outperform the original algorithms in terms of query processing cost and view maintenance cost.

Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
1556 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets

Authors: Satjaporn Tungsong, Gun Srijuntongsiri

Abstract:

This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.

Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1555 Multi-criteria Optimization of Square Beam using Linear Weighted Average Model

Authors: Ali Farhaninejad, Rizal Zahari, Ehsan Rasooliyazdi

Abstract:

Increasing energy absorption is a significant parameter in vehicle design. Absorbing more energy results in decreasing occupant damage. Limitation of the deflection in a side impact results in decreased energy absorption (SEA) and increased peak load (PL). Hence a high crash force jeopardizes passenger safety and vehicle integrity. The aims of this paper are to determine suitable dimensions and material of a square beam subjected to side impact, in order to maximize SEA and minimize PL. To achieve this novel goal, the geometric parameters of a square beam are optimized using the response surface method (RSM).multi-objective optimization is performed, and the optimum design for different response features is obtained.

Keywords: Crashworthiness, side impact, energy absorption, multi-objective optimization, Square beam, SEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1554 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

Authors: A. M. El-Zonkoly

Abstract:

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.

Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
1553 Performance Analysis of Self Excited Induction Generator Using Artificial Bee Colony Algorithm

Authors: A. K. Sharma, N. P. Patidar, G. Agnihotri, D. K. Palwalia

Abstract:

This paper presents the performance state analysis of Self-Excited Induction Generator (SEIG) using Artificial Bee Colony (ABC) optimization technique. The total admittance of the induction machine is minimized to calculate the frequency and magnetizing reactance corresponding to any rotor speed, load impedance and excitation capacitance. The performance of SEIG is calculated using the optimized parameter found. The results obtained by ABC algorithm are compared with results from numerical method. The results obtained coincide with the numerical method results. This technique proves to be efficient in solving nonlinear constrained optimization problems and analyzing the performance of SEIG.

Keywords: Artificial bee colony, Steady state analysis, Selfexcited induction generator, Nonlinear constrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1552 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping

Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain

Abstract:

Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions. 

Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1551 Feature Selection for Web Page Classification Using Swarm Optimization

Authors: B. Leela Devi, A. Sankar

Abstract:

The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.

Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259
1550 Generator Capability Curve Constraint for PSO Based Optimal Power Flow

Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama

Abstract:

An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.

Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
1549 Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste

Authors: R.Muthuvelayudham, T.Viruthagiri

Abstract:

Response Surface Methodology (RSM) is a powerful and efficient mathematical approach widely applied in the optimization of cultivation process. Cellulase enzyme production by Trichoderma reesei RutC30 using agricultural waste rice straw and banana fiber as carbon source were investigated. In this work, sequential optimization strategy based statistical design was employed to enhance the production of cellulase enzyme through submerged cultivation. A fractional factorial design (26-2) was applied to elucidate the process parameters that significantly affect cellulase production. Temperature, Substrate concentration, Inducer concentration, pH, inoculum age and agitation speed were identified as important process parameters effecting cellulase enzyme synthesis. The concentration of lignocelluloses and lactose (inducer) in the cultivation medium were found to be most significant factors. The steepest ascent method was used to locate the optimal domain and a Central Composite Design (CCD) was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined.

Keywords: Banana fiber, Cellulase, Optimization, Rice straw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
1548 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm

Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura

Abstract:

In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.

Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
1547 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization

Authors: Lana Dalawr Jalal

Abstract:

This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.

Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
1546 Shape Memory alloy Actuator System Optimization for New Hand Prostheses

Authors: Mogeeb A. Ahmed, Mona F. Taher, Sayed M. Metwalli

Abstract:

Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.

Keywords: Optimization, Prosthetic hand, Shape memory alloy, Thermoelectric device, Actuator system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
1545 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Authors: Saravana Kannan Thangavelu

Abstract:

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
1544 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao

Abstract:

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

Keywords: OFDMA, Fairness, AWUF, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1543 Design Optimization of Ferrocement-Laminated Plate Using Genetic Algorithm

Authors: M. Rokonuzzaman, Z. Gürdal

Abstract:

This paper describes the design optimization of ferrocement-laminated plate made up of reinforcing steel wire mesh(es) and cement mortar. For the improvement of the designing process, the plate is modeled as a multi-layer medium, dividing the ferrocement plate into layers of mortar and ferrocement. The mortar layers are assumed to be isotropic in nature and the ferrocement layers are assumed to be orthotropic. The ferrocement layers are little stiffer, but much more costlier, than the mortar layers due the presence of steel wire mesh. The optimization is performed for minimum weight design of the laminate using a genetic algorithm. The optimum designs are discussed for different plate configurations and loadings, and it is compared with the worst designs obtained at the final generation. The paper provides a procedure for the designers in decision-making process.

Keywords: Buckling, Ferrocement-Laminated Plate, Genetic Algorithm, Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
1542 Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

Authors: S.Shokri, S.Zahedi, M.Ahmadi Marvast, B. Baloochi, H.Ganji

Abstract:

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

Keywords: Statistical model, Multiphase Reactors, Gas oil, Hydrodesulfurization, Optimization, Kinetics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
1541 Optimization Method Based MPPT for Wind Power Generators

Authors: Chun-Yao Lee , Yi-Xing Shen , Jung-Cheng Cheng , Chih-Wen Chang, Yi-Yin Li

Abstract:

This paper proposes the method combining artificial neural network with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. With the measurements of wind speed, rotor speed of wind generator and output power, the artificial neural network can be trained and the wind speed can be estimated. The proposed control system in this paper provides a manner for searching the maximum output power of wind generator even under the conditions of varying wind speed and load impedance.

Keywords: maximum power point tracking, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827