Search results for: Image Classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2462

Search results for: Image Classification

2042 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kr. Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: Image fusion, IR thermal imager, multi-sensor, Multi-Scale Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 429
2041 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures

Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen

Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
2040 HSV Image Watermarking Scheme Based on Visual Cryptography

Authors: Rawan I. Zaghloul, Enas F. Al-Rawashdeh

Abstract:

In this paper a simple watermarking method for color images is proposed. The proposed method is based on watermark embedding for the histograms of the HSV planes using visual cryptography watermarking. The method has been proved to be robust for various image processing operations such as filtering, compression, additive noise, and various geometrical attacks such as rotation, scaling, cropping, flipping, and shearing.

Keywords: Histogram, HSV image, Visual Cryptography, Watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
2039 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
2038 Active Contours with Prior Corner Detection

Authors: U.A.A. Niroshika, Ravinda G.N. Meegama

Abstract:

Deformable active contours are widely used in computer vision and image processing applications for image segmentation, especially in biomedical image analysis. The active contour or “snake" deforms towards a target object by controlling the internal, image and constraint forces. However, if the contour initialized with a lesser number of control points, there is a high probability of surpassing the sharp corners of the object during deformation of the contour. In this paper, a new technique is proposed to construct the initial contour by incorporating prior knowledge of significant corners of the object detected using the Harris operator. This new reconstructed contour begins to deform, by attracting the snake towards the targeted object, without missing the corners. Experimental results with several synthetic images show the ability of the new technique to deal with sharp corners with a high accuracy than traditional methods.

Keywords: Active Contours, Image Segmentation, Harris Operator, Snakes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
2037 Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Authors: Christian Mayr, Holger Eisenreich, Stephan Henker, René Schüffny

Abstract:

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Keywords: Neural image processing, pulse computation application, pulsed Gabor convolution, VLSI pulse routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
2036 A Sub Pixel Resolution Method

Authors: S. Khademi, A. Darudi, Z. Abbasi

Abstract:

One of the main limitations for the resolution of optical instruments is the size of the sensor-s pixels. In this paper we introduce a new sub pixel resolution algorithm to enhance the resolution of images. This method is based on the analysis of multiimages which are fast recorded during the fine relative motion of image and pixel arrays of CCDs. It is shown that by applying this method for a sample noise free image one will enhance the resolution with 10-14 order of error.

Keywords: Sub Pixel Resolution, Moving Pixels, CCD, Image, Optical Instrument.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
2035 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
2034 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms

Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara

Abstract:

Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.

Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2033 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor

Authors: Jinseon Song, Yongwan Park

Abstract:

In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.

Keywords: Positioning, Distance, Camera, Features, SURF (Speed-Up Robust Features), Database, Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2032 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
2031 Performance Evaluation of Compression Algorithms for Developing and Testing Industrial Imaging Systems

Authors: Daniel F. Garcia, Julio Molleda, Francisco Gonzalez, Ruben Usamentiaga

Abstract:

The development of many measurement and inspection systems of products based on real-time image processing can not be carried out totally in a laboratory due to the size or the temperature of the manufactured products. Those systems must be developed in successive phases. Firstly, the system is installed in the production line with only an operational service to acquire images of the products and other complementary signals. Next, a recording service of the image and signals must be developed and integrated in the system. Only after a large set of images of products is available, the development of the real-time image processing algorithms for measurement or inspection of the products can be accomplished under realistic conditions. Finally, the recording service is turned off or eliminated and the system operates only with the real-time services for the acquisition and processing of the images. This article presents a systematic performance evaluation of the image compression algorithms currently available to implement a real-time recording service. The results allow establishing a trade off between the reduction or compression of the image size and the CPU time required to get that compression level.

Keywords: Lossless image compression, codec performanceevaluation, grayscale codec comparison, real-time image recording.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
2030 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP

Authors: S. Boonpoke, B. Marungsri

Abstract:

This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.

Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
2029 Face Recognition Using Double Dimension Reduction

Authors: M. A Anjum, M. Y. Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.

Keywords: Biometrics, DCT, Face Recognition, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
2028 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
2027 Analysis of Patterns in TV Commercials that Recognize NGO Image

Authors: J. Areerut, F. Samuel

Abstract:

The purpose of this research is to analyze the pattern of television commercials and how they encourage non-governmental organizations to build their image in Thailand. It realizes how public relations can impact an organization's image. It is a truth that bad public relations management can cause hurt a reputation. On the other hand, a very small amount of work in public relations helps your organization to be recognized broadly and eventually accepted even wider. The main idea in this paper is to study and analyze patterns of television commercials that could impact non-governmental organization's images in a greater way. This research uses questionnaires and content analysis to summarize results. The findings show the aspects of how patterns of television commercials that are suited to non-governmental organization work in Thailand. It will be useful for any non-governmental organization that wishes to build their image through television commercials and also for further work based on this research.

Keywords: Television Commercial (TVC), Organization Image, Non-Governmental Organization: NGO, Public Relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
2026 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: Colour data, local stereo matching, stereo correspondence, disparity map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
2025 Performance Analysis of Chrominance Red and Chrominance Blue in JPEG

Authors: Mamta Garg

Abstract:

While compressing text files is useful, compressing still image files is almost a necessity. A typical image takes up much more storage than a typical text message and without compression images would be extremely clumsy to store and distribute. The amount of information required to store pictures on modern computers is quite large in relation to the amount of bandwidth commonly available to transmit them over the Internet and applications. Image compression addresses the problem of reducing the amount of data required to represent a digital image. Performance of any image compression method can be evaluated by measuring the root-mean-square-error & peak signal to noise ratio. The method of image compression that will be analyzed in this paper is based on the lossy JPEG image compression technique, the most popular compression technique for color images. JPEG compression is able to greatly reduce file size with minimal image degradation by throwing away the least “important" information. In JPEG, both color components are downsampled simultaneously, but in this paper we will compare the results when the compression is done by downsampling the single chroma part. In this paper we will demonstrate more compression ratio is achieved when the chrominance blue is downsampled as compared to downsampling the chrominance red in JPEG compression. But the peak signal to noise ratio is more when the chrominance red is downsampled as compared to downsampling the chrominance blue in JPEG compression. In particular we will use the hats.jpg as a demonstration of JPEG compression using low pass filter and demonstrate that the image is compressed with barely any visual differences with both methods.

Keywords: JPEG, Discrete Cosine Transform, Quantization, Color Space Conversion, Image Compression, Peak Signal to Noise Ratio & Compression Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
2024 Decomposition Method for Neural Multiclass Classification Problem

Authors: H. El Ayech, A. Trabelsi

Abstract:

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
2023 National Image in the Age of Mass Self-Communication: An Analysis of Internet Users' Perception of Portugal

Authors: L. Godinho, N. Teixeira

Abstract:

Nowadays, massification of Internet access represents one of the major challenges to the traditional powers of the State, among which the power to control its external image. The virtual world has also sparked the interest of social sciences which consider it a new field of study, an immense open text where sense is expressed. In this paper, that immense text has been accessed to so as to understand the perception Internet users from all over the world have of Portugal. Ours is a quantitative and qualitative approach, as we have resorted to buzz, thematic and category analysis. The results confirm the predominance of sea stereotype in others' vision of the Portuguese people, and evidence that national image has adapted to network communication through processes of individuation and paganization.

Keywords: Internet, national image, perception, web analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
2022 Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network

Authors: Insung Jung, Gi-Nam Wang

Abstract:

The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.

Keywords: Neural network, Back-propagation, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
2021 Image Transmission via Iterative Cellular-Turbo System

Authors: Ersin Gose, Kenan Buyukatak, Onur Osman, Osman N. Ucan

Abstract:

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Keywords: Iterative Cellular Image Processing Algorithm (ICIPA), Turbo Coding, Iterative Cellular Turbo System (IC-TS), Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
2020 Extraction of Semantic Digital Signatures from MRI Photos for Image-Identification Purposes

Authors: Marios Poulos, George Bokos

Abstract:

This paper makes an attempt to solve the problem of searching and retrieving of similar MRI photos via Internet services using morphological features which are sourced via the original image. This study is aiming to be considered as an additional tool of searching and retrieve methods. Until now the main way of the searching mechanism is based on the syntactic way using keywords. The technique it proposes aims to serve the new requirements of libraries. One of these is the development of computational tools for the control and preservation of the intellectual property of digital objects, and especially of digital images. For this purpose, this paper proposes the use of a serial number extracted by using a previously tested semantic properties method. This method, with its center being the multi-layers of a set of arithmetic points, assures the following two properties: the uniqueness of the final extracted number and the semantic dependence of this number on the image used as the method-s input. The major advantage of this method is that it can control the authentication of a published image or its partial modification to a reliable degree. Also, it acquires the better of the known Hash functions that the digital signature schemes use and produces alphanumeric strings for cases of authentication checking, and the degree of similarity between an unknown image and an original image.

Keywords: Computational Geometry, MRI photos, Image processing, pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
2019 Indexing and Searching of Image Data in Multimedia Databases Using Axial Projection

Authors: Khalid A. Kaabneh

Abstract:

This paper introduces and studies new indexing techniques for content-based queries in images databases. Indexing is the key to providing sophisticated, accurate and fast searches for queries in image data. This research describes a new indexing approach, which depends on linear modeling of signals, using bases for modeling. A basis is a set of chosen images, and modeling an image is a least-squares approximation of the image as a linear combination of the basis images. The coefficients of the basis images are taken together to serve as index for that image. The paper describes the implementation of the indexing scheme, and presents the findings of our extensive evaluation that was conducted to optimize (1) the choice of the basis matrix (B), and (2) the size of the index A (N). Furthermore, we compare the performance of our indexing scheme with other schemes. Our results show that our scheme has significantly higher performance.

Keywords: Axial Projection, images, indexing, multimedia database, searching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
2018 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping

Authors: Adnan A. Y. Mustafa

Abstract:

In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.

Keywords: Big images, binary images, similarity, matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
2017 The Mechanistic Deconvolutive Image Sensor Model for an Arbitrary Pan–Tilt Plane of View

Authors: S. H. Lim, T. Furukawa

Abstract:

This paper presents a generalized form of the mechanistic deconvolution technique (GMD) to modeling image sensors applicable in various pan–tilt planes of view. The mechanistic deconvolution technique (UMD) is modified with the given angles of a pan–tilt plane of view to formulate constraint parameters and characterize distortion effects, and thereby, determine the corrected image data. This, as a result, does not require experimental setup or calibration. Due to the mechanistic nature of the sensor model, the necessity for the sensor image plane to be orthogonal to its z-axis is eliminated, and it reduces the dependency on image data. An experiment was constructed to evaluate the accuracy of a model created by GMD and its insensitivity to changes in sensor properties and in pan and tilt angles. This was compared with a pre-calibrated model and a model created by UMD using two sensors with different specifications. It achieved similar accuracy with one-seventh the number of iterations and attained lower mean error by a factor of 2.4 when compared to the pre-calibrated and UMD model respectively. The model has also shown itself to be robust and, in comparison to pre-calibrated and UMD model, improved the accuracy significantly.

Keywords: Image sensor modeling, mechanistic deconvolution, calibration, lens distortion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2016 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
2015 The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code

Authors: Alfred Chen, Shr Yu Lu, Cong Seng Hong, Yur-June Wang

Abstract:

This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.

Keywords: Augmented reality, QR code, Visual tag, Handheldcommunicating device

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
2014 Multi-Focus Image Fusion Using SFM and Wavelet Packet

Authors: Somkait Udomhunsakul

Abstract:

In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments.

Keywords: Multi-focus image fusion, Wavelet Packet, Spatial Frequency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
2013 Feature Subset Selection Using Ant Colony Optimization

Authors: Ahmed Al-Ani

Abstract:

Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600