Search results for: Association Rule Mining.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1150

Search results for: Association Rule Mining.

730 Characteristics and Outcomes of COVID-19 Related Stroke: A Cohort Study

Authors: Kasra Afsahi, Maryam Soheilifar

Abstract:

Cerebrovascular accident (CVA) is a neurological side effect of COVID-19 disease wit high rate in pandemics. Effect of COVID-19 disease on disorder is unclear. In this cohort, patients with COVID-19 disease were assessed. 60 CVA cases were assessed in a referral hospital in 2020. The major factor was mortality and the cases were those with and without death. The groups were compared for all features about mortality in the patients with COVID-19 and CVA. Totally 23 out of 60 cases (38.3%) were expired. In univariate analysis there was significant association for death by ischemic heart disease (P = 0.015), high-severity stroke (P = 0.012), high C-reactive protein (CRP) (P = 0.001), high ESR (P = 0.009), pleural effusion (P = 0.005), pericardial effusion (P = 0.027), cardiomegaly (P = 0.005), ground glass opacity (P = 0.001), and consolidation (P = 0.001). Among these factors, there was significant association only for CRP (P = 0.001) and consolidation (P = 0.003) in multivariate analysis. Mortality in the cases with COVID-19-related CVA is one-third and it has relationship to elevated CRP and finding the consolidation in the computerized tomography scan of the lungs.

Keywords: COVID-19, stroke, prognosis, C-reactive protein, CRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 357
729 Information Gain Ratio Based Clustering for Investigation of Environmental Parameters Effects on Human Mental Performance

Authors: H. Mehdi, Kh. S. Karimov, A. A. Kavokin

Abstract:

Methods of clustering which were developed in the data mining theory can be successfully applied to the investigation of different kinds of dependencies between the conditions of environment and human activities. It is known, that environmental parameters such as temperature, relative humidity, atmospheric pressure and illumination have significant effects on the human mental performance. To investigate these parameters effect, data mining technique of clustering using entropy and Information Gain Ratio (IGR) K(Y/X) = (H(X)–H(Y/X))/H(Y) is used, where H(Y)=-ΣPi ln(Pi). This technique allows adjusting the boundaries of clusters. It is shown that the information gain ratio (IGR) grows monotonically and simultaneously with degree of connectivity between two variables. This approach has some preferences if compared, for example, with correlation analysis due to relatively smaller sensitivity to shape of functional dependencies. Variant of an algorithm to implement the proposed method with some analysis of above problem of environmental effects is also presented. It was shown that proposed method converges with finite number of steps.

Keywords: Clustering, Correlation analysis, EnvironmentalParameters, Information Gain Ratio, Mental Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
728 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto

Abstract:

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Keywords: Block caving, ground penetrating radar, reflectivity, RQD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
727 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease

Authors: Elizabeth Stojanovski

Abstract:

Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.

Keywords: Random-effects, meta-analysis, Bayesian, variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
726 Collective Redress in Consumer Protection in South East Europe: Cross-National Comparisons, Issues of Commonality and Difference

Authors: Veronika Efremova

Abstract:

In recent decades, there have been significant developments in the European Union in the field of collective consumer redress. South East European countries (SEE) covered by this paper, in line with their EU accession priorities and duties under Stabilisation and Association Agreements, have to harmonize their national laws with the relevant EU acquis for consumer protection (Chapter 28: Health and Consumer). In these countries, only minimal compliance is achieved. SEE countries have introduced rudimentary collective redress mechanisms, with modest enforcement of collective redress and case law. This paper is based on comprehensive interdisciplinary research conducted for SEE countries on common principles for injunctive and compensatory collective redress mechanisms, emphasizing cross-national comparisons, underlining issues of commonality and difference aiming to develop recommendations for an adequate enforcement of collective redress. SEE countries are recognized by the sectoral approach for regulating collective redress contrary to the majority of EU Member States with having adopted horizontal approach to collective redress. In most SEE countries, the laws do not recognize compensatory but only injunctive collective redress in consumer protection. All responsible stakeholders for implementation of collective redress in SEE countries, lack information and awareness on collective redress mechanisms and the way they function in practice. Therefore, specific actions are needed in these countries to make the whole system of collective redress for consumer protection operational and efficient. Taking into consideration the various designated stakeholders in collective redress in each SEE countries, there is a need of their mutual coordination and cooperation in order to develop consumer protection system and policies. By putting into practice the national collective redress mechanisms, effective access to justice for all consumers, the principle of rule of law will be secured and appropriate procedural guarantees to avoid abusive litigation will be ensured.

Keywords: Collective redress mechanism, consumer protection, commonality and difference, South East Europe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
725 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482
724 Three-Stage Mining Metals Supply Chain Coordination and Product Quality Improvement with Revenue Sharing Contract

Authors: Hamed Homaei, Iraj Mahdavi, Ali Tajdin

Abstract:

One of the main concerns of miners is to increase the quality level of their products because the mining metals price depends on their quality level; however, increasing the quality level of these products has different costs at different levels of the supply chain. These costs usually increase after extractor level. This paper studies the coordination issue of a decentralized three-level supply chain with one supplier (extractor), one mineral processor and one manufacturer in which the increasing product quality level cost at the processor level is higher than the supplier and at the level of the manufacturer is more than the processor. We identify the optimal product quality level for each supply chain member by designing a revenue sharing contract. Finally, numerical examples show that the designed contract not only increases the final product quality level but also provides a win-win condition for all supply chain members and increases the whole supply chain profit.

Keywords: Three-stage supply chain, product quality improvement, channel coordination, revenue sharing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
723 Influence of Apo E Polymorphism on Coronary Artery Disease

Authors: S. Fallah, M. Seifi, M. Firoozrai, T. Godarzi, M. Jafarzadeh, L. H. Ghohari

Abstract:

The ε4 allele of the ε2, ε3 and ε4 protein isoform polymorphism in the gene encoding apolipoprotein E (Apo E) has previously been associated with increased cardiac artery disease (CAD); therefore to investigate the significance of this polymorphism in pathogenesis of CAD in Iranian patients with stenosis and control subjects. To investigate the association between  Apo E polymorphism and coronary artery disease we performed a comparative case control study of the frequency of Apo E  polymorphism in One hundred CAD patients with stenosis who underwent coronary angiography (>50% stenosis) and 100 control subjects (<10% stenosis). The Apo E alleles and genotypes were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). We observed an association between the Apo E polymorphism and CAD in this study. These data suggest that the Apo ε4 and ε2 alleles increase the risk for CAD in Iranian population (χ2 =4.26, p= 0.05, OR=2 and χ2 =0.38, p=0.53, OR=1.2). These results suggest that ε4 and ε2 alleles are risk factors for stenosis.

Keywords: Arterial blood vessels, atherosclerosis, cholesterol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
722 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability

Authors: Pradeep Kumar, Abdul Wahid

Abstract:

Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.

Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
721 Operational risks Classification for Information Systems with Service-Oriented Architecture (Including Loss Calculation Example)

Authors: Irina Pyrlina

Abstract:

This article presents the results of a study conducted to identify operational risks for information systems (IS) with service-oriented architecture (SOA). Analysis of current approaches to risk and system error classifications revealed that the system error classes were never used for SOA risk estimation. Additionally system error classes are not normallyexperimentally supported with realenterprise error data. Through the study several categories of various existing error classifications systems are applied and three new error categories with sub-categories are identified. As a part of operational risks a new error classification scheme is proposed for SOA applications. It is based on errors of real information systems which are service providers for application with service-oriented architecture. The proposed classification approach has been used to classify SOA system errors for two different enterprises (oil and gas industry, metal and mining industry). In addition we have conducted a research to identify possible losses from operational risks.

Keywords: Enterprise architecture, Error classification, Oil&Gas and Metal&Mining industries, Operational risks, Serviceoriented architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
720 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
719 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: LiDAR, real-time system, clustering, tracking, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4670
718 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: Data fusion, Dempster-Shafer theory, data mining, event detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
717 Can Physical Activity and Dietary Fat Intake Influence Body Mass Index in a Cross-sectional Correlational Design?

Authors: D.O. Omondi, L.O.A. Othuon, G.M. Mbagaya

Abstract:

The purpose of this study was to determine the influence of physical activity and dietary fat intake on Body Mass Index (BMI) of lecturers within a higher learning institutionalized setting. The study adopted a Cross-sectional Correlational Design and included 120 lecturers selected proportionately by simple random sampling techniques from a population of 600 lecturers. Data was collected using questionnaires, which had sections including physical activity checklist adopted from the international physical activity questionnaire (IPAQ), 24-hour food recall, anthropometric measurements mainly weight and height. Analysis involved the use of bivariate correlations and linear regression. A significant inverse association was registered between BMI and duration (in minutes) spent doing moderate intense physical activity per day (r=-0.322, p<0.01). Physical activity also predicted BMI (r2=0.096, F=13.616, β=-3.22, t=-3.69, n=120, P<0.01). However, the association between Body Mass Index and dietary fat was not significant (r=0.038, p>0.05). Physical activity emerged as a more powerful determinant of BMI compared to dietary fat intake.

Keywords: Physical activity, dietary fat intake, Body MassIndex, Kenya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
716 Systematic Analysis of Dynamic Association of Health Outcomes with Computer Usage for Office Staff

Authors: Xiaoshu Lu, Esa-Pekka Takala, Risto Toivonen

Abstract:

This paper systematically investigates the timedependent health outcomes for office staff during computer work using the developed mathematical model. The model describes timedependent health outcomes in multiple body regions associated with computer usage. The association is explicitly presented with a doseresponse relationship which is parametrized by body region parameters. Using the developed model we perform extensive investigations of the health outcomes statically and dynamically. We compare the risk body regions and provide various severity rankings of the discomfort rate changes with respect to computer-related workload dynamically for the study population. Application of the developed model reveals a wide range of findings. Such broad spectrum of investigations in a single report literature is lacking. Based upon the model analysis, it is discovered that the highest average severity level of the discomfort exists in neck, shoulder, eyes, shoulder joint/upper arm, upper back, low back and head etc. The biggest weekly changes of discomfort rates are in eyes, neck, head, shoulder, shoulder joint/upper arm and upper back etc. The fastest discomfort rate is found in neck, followed by shoulder, eyes, head, shoulder joint/upper arm and upper back etc. Most of our findings are consistent with the literature, which demonstrates that the developed model and results are applicable and valuable and can be utilized to assess correlation between the amount of computer-related workload and health risk.

Keywords: Computer-related workload, health outcomes, dynamic association, dose-response relationship, systematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
715 Hybrid Intelligent Intrusion Detection System

Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed

Abstract:

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
714 Granularity Analysis for Spatio-Temporal Web Sensors

Authors: Shun Hattori

Abstract:

In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).

Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
713 Traumatic Ankle Pain: Adequacy of Clinical Information in X-Ray Request with Reference to the Ottawa Ankle Rule

Authors: Rania Mustafa

Abstract:

This audit was conducted at Manchester University NHS Foundation Trust, Wythenshawe Hospital Radiology and Accident and Emergency [A&E] Department to assess the appropriateness of clinical information in X-ray requests, specifically in cases of acute ankle injuries. As per the Ottawa Ankle Rules and the recommendations of National Institute for Health and Care Excellence [NICE] and the Royal College of Radiology, we aimed to evaluate the appropriateness of referrals and the thoroughness of clinical information provided by Emergency Department [ED] clinicians for ankle radiography. Our goal was to achieve 100% compliance with these guidelines. The audit involved a comprehensive analysis spanning the period from August 2022 to January 2023, encompassing patient records, radiographic orders, and clinical assessments. Data collection included patient demographics, presenting complaints, clinical assessments, adherence to Ottawa Ankle Rules criteria, and subsequent radiography orders. Here we conducted two audit cycles, involving 38 patients in the first cycle and 86 patients in the second cycle. The data were furtherly filtered to include all patients who were referred from the ED for an ankle Xray with a history of acute trauma and age of more than 18 years. The key finding was that in August 2022, 60% of cases met the Ottawa Ankle Rules criteria accurately, indicating a need for improvement in adherence. However, by January 2023, there was a notable improvement, with 95% of cases accurately meeting the criteria. This significant change reflects an increased alignment with best practices for ankle radiography referrals.

Keywords: Ankle, injuries, Ottawa Ankle Rule, X-rays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290
712 The Association between Food Security Status and Depression in Two Iranian Ethnic Groups Living in Northwest of Iran

Authors: A. Rezazadeh, N. Omidvar, H. Eini-Zinab

Abstract:

Food insecurity (FI) influences may result in poor physical and mental health outcomes. Minor ethnic group may experience higher level of FI, and this situation may be related with higher depression prevalence. The aim of this study was to determine the association of depression with food security status in major (Azeri) and minor (Kurdish) ethnicity living in Urmia, West Azerbaijan, north of Iran. In this cross-sectional study, 723 participants (427 women and 296 men) aged 20–64 years old, from two ethnic groups (445 Azeri and 278 Kurdish), were selected through a multi stage cluster systematic sampling. Depression rate was assessed by “Beck” short form questionnaire (validated in Iranians) through interviews. Household FI status (HFIS) was measured using adapted HFI access scale through face-to-face interviews at homes. Multinomial logistic regression was used to estimate odds ratios (OR) of depression across HFIS. Higher percent of Kurds had moderate and severe depression in comparison with Azeri group (73 [17.3%] vs. 86 [27.9%]). There were not any significant differences between the two ethnicities in mild depression. Also, of all the subjects, moderate-to-sever FI was more prevalent in Kurds (28.5%), compared to Azeri group (17.3%) [P < 0.01]. Kurdish ethnic group living in food security or mild FI households had lower chance to have symptom of severe depression in comparison to those with sever FI (OR=0.097; 95% CI: 0.02-0.47). However, there was no significant association between depression and HFI in Azeri group. Findings revealed that the severity of HFI was related with severity depression in minor studied ethnic groups. However, in Azeri ethnicity as a major group, other confounders may have influence on the relation with depression and FI, that were not studied in the present study.

Keywords: Depression, ethnicity, food security status, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
711 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi

Abstract:

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
710 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.

Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
709 A Class of Formal Operators for Combinatorial Identities and its Application

Authors: Ruigang Zhang, Wuyungaowa, Xingchen Ma

Abstract:

In this paper, we present some formulas of symbolic operator summation, which involving Generalization well-know number sequences or polynomial sequences, and mean while we obtain some identities about the sequences by employing M-R‘s substitution rule.

Keywords: Generating functions, operators sequence group, Riordan arrays, R. G operator group, combinatorial identities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
708 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer

Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal

Abstract:

Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.

Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
707 Cluster Algorithm for Genetic Diversity

Authors: Manpreet Singh, Keerat Kaur, Bhavdeep Singh

Abstract:

With the hardware technology advancing, the cost of storing is decreasing. Thus there is an urgent need for new techniques and tools that can intelligently and automatically assist us in transferring this data into useful knowledge. Different techniques of data mining are developed which are helpful for handling these large size databases [7]. Data mining is also finding its role in the field of biotechnology. Pedigree means the associated ancestry of a crop variety. Genetic diversity is the variation in the genetic composition of individuals within or among species. Genetic diversity depends upon the pedigree information of the varieties. Parents at lower hierarchic levels have more weightage for predicting genetic diversity as compared to the upper hierarchic levels. The weightage decreases as the level increases. For crossbreeding, the two varieties should be more and more genetically diverse so as to incorporate the useful characters of the two varieties in the newly developed variety. This paper discusses the searching and analyzing of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the genetic diversity between the selected wheat varieties. Cluster analysis technique is used for retrieving the results.

Keywords: Genetic diversity, pedigree, nutrients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
706 Microalbuminuria in Essential Hypertension

Authors: Sharan Badiger, Prema T. Akkasaligar, Sandeep HM, Biradar MS

Abstract:

Essential hypertension (HTN) usually clusters with other cardiovascular risk factors such as age, overweight, diabetes, insulin resistance and dyslipidemia. The target organ damage (TOD) such as left ventricular hypertrophy, microalbuminuria (MA), acute coronary syndrome (ACS), stroke and cognitive dysfunction takes place early in course of hypertension. Though the prevalence of hypertension is high in India, the relationship between microalbuminuria and target organ damage in hypertension is not well studied. This study aim at detecting MA in essential hypertension and its relation to severity of HTN, duration of HTN, body mass index (BMI), age and TOD such as HTN retinopathy and acute coronary syndrome The present study was done in 100 patients of essential hypertension non diabetics admitted to B.L.D.E.University-s Sri B.M.Patil Medical College, Bijapur, from October 2008 to April 2011. The patients underwent detailed history and clinical examination. Early morning 5 ml of urine sample was collected & MA was estimated by immunoturbidometry method. The relationship of MA with the duration & severity of HTN, BMI, age, sex and TOD's like hypertensive retinopathy, ACS was assessed by univariate analysis. The prevalence of MA in this study was found to be 63 %. In that 42% were male & 21% were female. In this study a significant association between MA and the duration of hypertension (p = 0.036) & (OR =0.438). Longer the duration of hypertension, more possibility of microalbumin in urine. Also there was a significant association between severity of hypertension and MA (p=0.045) and (OR=0.093). MA was positive in 50 (79.4%) patients out of 63, whose blood pressure was >160/100 mm Hg. In this study a significant association between MA and the grades of hypertensive retinopathy (p =0.011) and acute coronary syndrome (p = 0.041) (OR =2.805). Gender and BMI did not pose high risk for MA in this study.The prevalence of MA in essential hypertension is high in this part of the community and MA will increase the risk of developing target organ damage.Early screening of patients with essential hypertension for MA and aggressive management of positive cases might reduce the burden of chronic kidney diseases and cardiovascular diseases in the community.

Keywords: Acute coronary syndrome, Essential hypertension, Microalbuminuria, Target organ damage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
705 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair

Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira

Abstract:

A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.

Keywords: Bottleneck, Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956
704 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
703 Work-Related Shoulder Lesions and Labor Lawsuits in Brazil: Cross-Sectional Study on Worker Health Actions Developed by Employers

Authors: Reinaldo Biscaro, Luciano R. Ferreira, Leonardo C. Biscaro, Raphael C. Biscaro, Isabela S. Vasconcelos, Laura C. R. Ferreira, Cristiano M. Galhardi, Erica P. Baciuk

Abstract:

Introduction: The present study had the objective to present the profile of workers with shoulder disorders related to labor lawsuits in Brazil. The study analyzed the association between the worker’s health and the actions performed by the companies related to injured professional. The research method performed a retrospective, cross-sectional and quantitative database analysis. The documents of labor lawsuits with shoulder injury registered at the Regional Labor Court in the 15th region (Campinas - São Paulo) were submitted to the medical examination and evaluated during the period from 2012 until 2015. The data collected were age, gender, onset of symptoms, length of service, current occupation, type of shoulder injury, referred complaints, type of acromion, associated or related diseases, company actions as CAT (workplace accident communication), compliance of NR7 by the organization (Environmental Risk Prevention Program - PPRA and Medical Coordination Program in Occupational Health - PCMSO). Results: From the 93 workers evaluated, there was a prevalence of men (58.1%), with a mean age of 42.6 y-o, and 54.8% were included in the age group 35-49 years. Regarding the length of work time in the company, 66.7% have worked for more than 5 years. There was an association between gender and current occupational status (p < 0.005), with predominance of women in household occupation (13 vs. 2) and predominance of unemployed men in job search situation (24 vs. 10) and reintegrated to work by judicial decision (8 vs. 2). There was also a correlation between pain and functional limitation (p < 0.01). There was a positive association of PPRA with the complaint of functional limitation and negative association with pain (p < 0.04). There was also a correlation between the sedentary lifestyle and the presence of PCMSO and PPRA (p < 0.04), and the absence of CAT in the companies (p < 0.001). It was concluded that the appearance or aggravation of osseous and articular shoulder pathologies in workers who have undertaken labor law suits seem to be associated with individual habits or inadequate labor practices. These data can help preventing the occurrence of these lesions by implementing local health promotion policies at work.

Keywords: Work-related accidents, cross-sectional study, shoulder lesions, labor lawsuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
702 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
701 The Association between the Firm Characteristics and Corporate Mandatory Disclosure the Case of Greece

Authors: Despina Galani, Anastasios Alexandridis, Antonios Stavropoulos

Abstract:

The main thrust of this paper is to assess the level of disclosure in the annual reports of non-financial Greek firms and to empirically investigate the hypothesized impact of several firm characteristics on the extent of mandatory disclosure. A disclosure checklist consisting of 100 mandatory items was developed to assess the level of disclosure in the 2009 annual reports of 43 Greek companies listed at the Athens stock exchange. The association between the level of disclosure and some firm characteristics was examined using multiple linear regression analysis. The study reveals that Greek companies on general have responded adequately to the mandatory disclosure requirements of the regulatory bodies. The findings also indicate that firm size was significant positively associated with the level of disclosure. The remaining variables such as age, profitability, liquidity, and board composition were found to be insignificant in explaining the variation of mandatory disclosures. The outcome of this study is undoubtedly of great concern to the investment community at large to assist in evaluating the extent of mandatory disclosure by Greek firms and explaining the variation of disclosure in light of firm-specific characteristics.

Keywords: Mandatory disclosure, Annual report, Disclosure index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3980