Search results for: optimization problems in signal processing.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6191

Search results for: optimization problems in signal processing.

5801 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
5800 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch

Authors: A. K. Al-Othman, K. M. EL-Nagger

Abstract:

Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
5799 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: Expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
5798 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity

Authors: Mamoun F. Al-Mistarihi

Abstract:

We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.

Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
5797 Computer-based Alarm Processing and Presentation Methods in Nuclear Power Plants

Authors: Jung-Woon Lee, Jung-Taek Kim, Jae-Chang Park, In-Koo Hwang, Sung-Pil Lyu

Abstract:

Computerized alarm systems have been applied increasingly to nuclear power plants. For existing plants, an add-on computer alarm system is often installed to the control rooms. Alarm avalanches during the plant transients are major problems with the alarm systems in nuclear power plants. Computerized alarm systems can process alarms to reduce the number of alarms during the plant transients. This paper describes various alarm processing methods, an alarm cause tracking function, and various alarm presentation schemes to show alarm information to the operators effectively which are considered during the development of several computerized alarm systems for Korean nuclear power plants and are found to be helpful to the operators.

Keywords: Alarm processing, Alarm presentation, Alarm causetracking, Alarm logic diagram computerization, Alarm patternrecognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
5796 Optimized Weight Vector for QoS Aware Web Service Selection Algorithm Using Particle Swarm Optimization

Authors: N. Arulanand, P. M. Ananth

Abstract:

Quality of Service (QoS) attributes as part of the service description is an important factor for service attribute. It is not easy to exactly quantify the weight of each QoS conditions since human judgments based on their preference causes vagueness. As web services selection requires optimization, evolutionary computing based on heuristics to select an optimal solution is adopted. In this work, the evolutionary computing technique Particle Swarm Optimization (PSO) is used for selecting a suitable web services based on the user’s weightage of each QoS values by optimizing the QoS weight vector and thereby finding the best weight vectors for best services that is being selected. Finally the results are compared and analyzed using static inertia weight and deterministic inertia weight of PSO.

Keywords: QoS, Optimization, Particle Swarm Optimization (PSO), weight vector, web services, web service selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
5795 Parallel Priority Region Approach to Detect Background

Authors: Sallama Athab, Hala Bahjat, Zhang Yinghui

Abstract:

Background detection is essential in video analyses; optimization is often needed in order to achieve real time calculation. Information gathered by dual cameras placed in the front and rear part of an Autonomous Vehicle (AV) is integrated for background detection. In this paper, real time calculation is achieved on the proposed technique by using Priority Regions (PR) and Parallel Processing together where each frame is divided into regions then and each region process is processed in parallel. PR division depends upon driver view limitations. A background detection system is built on the Temporal Difference (TD) and Gaussian Filtering (GF). Temporal Difference and Gaussian Filtering with multi threshold and sigma (weight) value are be based on PR characteristics. The experiment result is prepared on real scene. Comparison of the speed and accuracy with traditional background detection techniques, the effectiveness of PR and parallel processing are also discussed in this paper.

Keywords: Autonomous Vehicle, Background Detection, Dual Camera, Gaussian Filtering, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
5794 Efficiency of Different GLR Test-statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.

Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
5793 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
5792 Noise Removal from Surface Respiratory EMG Signal

Authors: Slim Yacoub, Kosai Raoof

Abstract:

The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.

Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4328
5791 Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps

Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci

Abstract:

Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.

Keywords: Artifact, EEG, Renyi's entropy, kurtosis, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
5790 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
5789 Blind Non-Minimum Phase Channel Identification Using 3rd and 4th Order Cumulants

Authors: S. Safi, A. Zeroual

Abstract:

In this paper we propose a family of algorithms based on 3rd and 4th order cumulants for blind single-input single-output (SISO) Non-Minimum Phase (NMP) Finite Impulse Response (FIR) channel estimation driven by non-Gaussian signal. The input signal represents the signal used in 10GBASE-T (or IEEE 802.3an-2006) as a Tomlinson-Harashima Precoded (THP) version of random Pulse-Amplitude Modulation with 16 discrete levels (PAM-16). The proposed algorithms are tested using three non-minimum phase channel for different Signal-to-Noise Ratios (SNR) and for different data input length. Numerical simulation results are presented to illustrate the performance of the proposed algorithms.

Keywords: Higher Order Cumulants, Channel identification, Ethernet communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
5788 Extending the Quantum Entropy to Multidimensional Signal Processing

Authors: Youssef Khmou, Said Safi, Miloud Frikel

Abstract:

This paper treats different aspects of entropy measure in classical information theory and statistical quantum mechanics, it presents the possibility of extending the definition of Von Neumann entropy to image and array processing. In the first part, we generalize the quantum entropy using singular values of arbitrary rectangular matrices to measure the randomness and the quality of denoising operation, this new definition of entropy can be implemented to compare the performance analysis of filtering methods. In the second part, we apply the concept of pure state in quantum formalism to generalize the maximum entropy method for narrowband and farfield source localization problem. Several computer simulation results are illustrated to demonstrate the effectiveness of the proposed techniques.

Keywords: Von Neumann entropy, Filtering, array, DoA, Maximum Entropy Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
5787 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar

Abstract:

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts grey relational analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole. 

Keywords: Metal matrix composite, Drilling, Optimization, step drill, Surface roughness, burr height, hole diameter error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
5786 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: Bio-signals, DC Component, Doppler Effect, ellipse fitting, radar, SDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
5785 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: Cloud computing, cloud monitoring, performance optimization, high availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86
5784 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms

Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara

Abstract:

Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.

Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
5783 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)

Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,

Abstract:

One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.

Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
5782 Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs

Authors: D. Fodorean, D.C. Popa, F. Jurca, M. Ruba

Abstract:

the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.

Keywords: electrical machines, numerical validation, optimization, electric wheel chair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
5781 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: Noise, signal-to-noise ratio, stochastic signals, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
5780 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3644
5779 Modeling of Dielectric Heating in Radio- Frequency Applicator Optimized for Uniform Temperature by Means of Genetic Algorithms

Authors: Camelia Petrescu, Lavinia Ferariu

Abstract:

The paper presents an optimization study based on genetic algorithms (GA-s) for a radio-frequency applicator used in heating dielectric band products. The weakly coupled electro-thermal problem is analyzed using 2D-FEM. The design variables in the optimization process are: the voltage of a supplementary “guard" electrode and six geometric parameters of the applicator. Two objective functions are used: temperature uniformity and total active power absorbed by the dielectric. Both mono-objective and multiobjective formulations are implemented in GA optimization.

Keywords: Dielectric heating, genetic algorithms, optimization, RF applicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
5778 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: Clustering algorithm, potential function, speech signal, the UBSS model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
5777 The Synthetic T2 Quality Control Chart and its Multi-Objective Optimization

Authors: Francisco Aparisi, Marco A. de Luna

Abstract:

In some real applications of Statistical Process Control it is necessary to design a control chart to not detect small process shifts, but keeping a good performance to detect moderate and large shifts in the quality. In this work we develop a new quality control chart, the synthetic T2 control chart, that can be designed to cope with this objective. A multi-objective optimization is carried out employing Genetic Algorithms, finding the Pareto-optimal front of non-dominated solutions for this optimization problem.

Keywords: Multi-objective optimization, Quality Control, SPC, Synthetic T2 control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
5776 Speech Enhancement of Vowels Based on Pitch and Formant Frequency

Authors: R. Rishma Rodrigo, R. Radhika, M. Vanitha Lakshmi

Abstract:

Numerous signal processing based speech enhancement systems have been proposed to improve intelligibility in the presence of noise. Traditionally, studies of neural vowel encoding have focused on the representation of formants (peaks in vowel spectra) in the discharge patterns of the population of auditory-nerve (AN) fibers. A method is presented for recording high-frequency speech components into a low-frequency region, to increase audibility for hearing loss listeners. The purpose of the paper is to enhance the formant of the speech based on the Kaiser window. The pitch and formant of the signal is based on the auto correlation, zero crossing and magnitude difference function. The formant enhancement stage aims to restore the representation of formants at the level of the midbrain. A MATLAB software’s are used for the implementation of the system with low complexity is developed.

Keywords: Formant estimation, formant enhancement, pitch detection, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
5775 Improvement of Gregory's formula using Particle Swarm Optimization

Authors: N. Khelil. L. Djerou , A. Zerarka, M. Batouche

Abstract:

Consider the Gregory integration (G) formula with end corrections where h Δ is the forward difference operator with step size h. In this study we prove that can be optimized by minimizing some of the coefficient k a in the remainder term by particle swarm optimization. Experimental tests prove that can be rendered a powerful formula for library use.

Keywords: Numerical integration, Gregory Formula, Particle Swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
5774 Rotor Flow Analysis using Animplicit Harmonic Balance Method

Authors: D. Im, S. Choi, H. Kwon, S. H. Park, J. H. Kwon

Abstract:

This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.

Keywords: Design optimization, Implicit harmonic balancemethod, number of harmonics, rotor flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
5773 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO

Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri

Abstract:

This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.

Keywords: DPSO, TEP, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
5772 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: Optimization, zero-coupon curve, Nelson-Siegel- Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493