Search results for: open flow channel
3189 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries
Authors: B. Prashantha, S. Anish
Abstract:
The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.
Keywords: Atherosclerotic plaque, Oscillatory Shear Index, Stenosis nature, Wall Shear Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15313188 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion
Authors: L. Mouzai, M. Bouhadef
Abstract:
Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.
Keywords: Flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6213187 An Axisymmetric Finite Element Method for Compressible Swirling Flow
Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz
Abstract:
This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.
Keywords: Axisymmetric problem, compressible Navier- Stokes equations, continuous finite elements, swirling flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3463186 Evaluation of Efficient CSI Based Channel Feedback Techniques for Adaptive MIMO-OFDM Systems
Authors: Muhammad Rehan Khalid, Muhammad Haroon Siddiqui, Danish Ilyas
Abstract:
This paper explores the implementation of adaptive coding and modulation schemes for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) feedback systems. Adaptive coding and modulation enables robust and spectrally-efficient transmission over time-varying channels. The basic premise is to estimate the channel at the receiver and feed this estimate back to the transmitter, so that the transmission scheme can be adapted relative to the channel characteristics. Two types of codebook based channel feedback techniques are used in this work. The longterm and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The coded modulation increases the effective transmit power relative to uncoded variablerate variable-power MQAM performance for MIMO-OFDM feedback system. Hence proposed arrangement becomes an attractive approach to achieve enhanced spectral efficiency and improved error rate performance for next generation high speed wireless communication systems.Keywords: Adaptive Coded Modulation, MQAM, MIMO, OFDM, Codebooks, Feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19083185 A Meshfree Solution of Tow-Dimensional Potential Flow Problems
Authors: I. V. Singh, A. Singh
Abstract:
In this paper, mesh-free element free Galerkin (EFG) method is extended to solve two-dimensional potential flow problems. Two ideal fluid flow problems (i.e. flow over a rigid cylinder and flow over a sphere) have been formulated using variational approach. Penalty and Lagrange multiplier techniques have been utilized for the enforcement of essential boundary conditions. Four point Gauss quadrature have been used for the integration on two-dimensional domain (Ω) and nodal integration scheme has been used to enforce the essential boundary conditions on the edges (┌). The results obtained by EFG method are compared with those obtained by finite element method. The effects of scaling and penalty parameters on EFG results have also been discussed in detail.
Keywords: Meshless, EFG method, potential flow, Lagrange multiplier method, penalty method, penalty parameter and scaling parameter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15043184 Characterization of the LMOS with Different Channel Structure
Authors: Hung-Pei Hsu, Jyi-Tsong Lin, Po-Hsieh Lin, Cheng-Hsien Chang, Ming-Tsung Shih, Chan-Hsiang Chang, Shih-Chuan Tseng, Min-Yan Lin, Shih-Wen Hsu
Abstract:
In this paper, we propose a novel metal oxide semiconductor field effect transistor with L-shaped channel structure (LMOS), and several type of L-shaped structures are also designed, studied and compared with the conventional MOSFET device for the same average gate length (Lavg). The proposed device electrical characteristics are analyzed and evaluated by three dimension (3-D) ISE-TCAD simulator. It can be confirmed that the LMOS devices have higher on-state drain current and both lower drain-induced barrier lowering (DIBL) and subthreshold swing (S.S.) than its conventional counterpart has. In addition, the transconductance and voltage gain properties of the LMOS are also improved.Keywords: Average gate length (Lavg), drain-induced barrier lowering (DIBL), L-shaped channel MOSFET (LMOS), subthreshold swing (S.S.).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14133183 A Large-Eddy Simulation of Vortex Cell flow with Incoming Turbulent Boundary Layer
Authors: Arpiruk Hokpunna, Michael Manhart
Abstract:
We present a Large-Eddy simulation of a vortex cell with circular shaped. The results show that the flow field can be sub divided into four important zones, the shear layer above the cavity, the stagnation zone, the vortex core in the cavity and the boundary layer along the wall of the cavity. It is shown that the vortex core consits of solid body rotation without much turbulence activity. The vortex is mainly driven by high energy packets that are driven into the cavity from the stagnation point region and by entrainment of fluid from the cavity into the shear layer. The physics in the boundary layer along the cavity-s wall seems to be far from that of a canonical boundary layer which might be a crucial point for modelling this flow.Keywords: Turbulent flow, Large eddy simulations, boundary layer and cavity flow, vortex cell flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82383182 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez
Abstract:
Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.Keywords: Wind tunnel, low cost instrumentation, experimental testing, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8163181 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet
Authors: K. Boualem, T. Yahiaoui, A. Azzi
Abstract:
Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.
Keywords: Active control, CFD, NACA airfoil, synthetic jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16573180 Performance Evaluation of Bluetooth Links in the Presence of Specific Types of Interference
Authors: Radosveta Sokullu, Engin Karatepe
Abstract:
In the last couple of years Bluetooth has gained a large share in the market of home and personal appliances. It is now a well established technology a short range supplement to the wireless world of 802.11. The two main trends of research that have sprung from these developments are directed towards the coexistence and performance issues of Bluetooth and 802.11 as well as the co-existence in the very short range of multiple Bluetooth devices. Our work aims at thoroughly investigating different aspects of co-channel interference and effects of transmission power, distance and 802.11 interference on Bluetooth connections.
Keywords: Bluetooth, co-channel interference, 802.11, performance analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17533179 Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel
Authors: F. Roger, A. Traidia, B. Reynier
Abstract:
Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.
Keywords: Arc welding, Weld pool, Fluid flow, Metallurgical transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16063178 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies
Authors: Chinsuk Hong
Abstract:
This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.Keywords: Wall Pressure Fluctuation, Boundary Layer Flow, Transition, Turbulent Flow, Axisymmetric Body, Flow Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17023177 Simulation of Roughness Shape and Distribution Effects on Rarefied and Compressible Flows at Slip Flow Regime
Authors: M. Hakak Khadem, S. Hossainpour, M. Shams
Abstract:
A numerical simulation of micro Poiseuille flow has performed for rarefied and compressible flow at slip flow regimes. The wall roughness is simulated in two cases with triangular microelements and random micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on flow field. Two values of Mach and Knudsen numbers have used to investigate the effects of rarefaction as well as compressibility. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. High influence of roughness shape can be seen for both compressible and incompressible rarefied flows. In addition it is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases.Keywords: Relative roughness, slip flow, Poiseuille number, roughness distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11663176 Flow Regime Characterization in a Diseased Artery Model
Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson
Abstract:
Cardiovascular disease mostly in the form of atherosclerosis is responsible for 30% of all world deaths amounting to 17 million people per year. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis. The initiation and progression of the disease is strongly linked to the hemodynamic environment near the vessel wall. The aim of this study is to validate the flow of blood mimic through an arterial stenosis model with computational fluid dynamics (CFD) package. In experiment, an axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. Particle image velocimetry (PIV) was used to characterize the flow. The fluid consists of rigid spherical particles suspended in waterglycerol- NaCl mixture. The particles with 20 μm diameter were selected to follow the flow of fluid. The flow at Re=155, 270 and 390 were investigated. The experimental result is compared with FLUENT simulated flow that account for viscous laminar flow model. The results suggest that laminar flow model was sufficient to predict flow velocity at the inlet but the velocity at stenosis throat at Re =390 was overestimated. Hence, a transition to turbulent regime might have been developed at throat region as the flow rate increases.
Keywords: Atherosclerosis, Particle-laden flow, Particle imagevelocimetry, Stenosis artery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17233175 Flow Performance of Hybrid Cement Based Mortars
Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal
Abstract:
The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.Keywords: Waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8823174 A Two-Channel Secure Communication Using Fractional Chaotic Systems
Authors: Long Jye Sheu, Wei Ching Chen, Yen Chu Chen, Wei Tai Weng
Abstract:
In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.Keywords: fractional chaotic systems, synchronization, securecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17493173 CFD Analysis of Incompressible Turbulent Swirling Flow through Circle Grids Space Filling Plate
Authors: B. Manshoor, M. Jaat, Amir Khalid
Abstract:
Circle grid space filling plate is a flow conditioner with a fractal pattern and used to eliminate turbulence originating from pipe fittings in experimental fluid flow applications. In this paper, steady state, incompressible, swirling turbulent flow through circle grid space filling plate has been studied. The solution and the analysis were carried out using finite volume CFD solver FLUENT 6.2. Three turbulence models were used in the numerical investigation and their results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003. The turbulence models investigated here are the standard k-ε, realizable k-ε, and the Reynolds Stress Model (RSM). The results showed that the RSM model gave the best agreement with the ISO pressure drop correlation. The effects of circle grids space filling plate thickness and Reynolds number on the flow characteristics have been investigated as well.
Keywords: Flow conditioning, turbulent flow, turbulent modeling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20773172 Identifying Potential Partnership for Open Innovation by using Bibliographic Coupling and Keyword Vector Mapping
Authors: Inchae Park, Byungun Yoon
Abstract:
As open innovation has received increasingly attention in the management of innovation, the importance of identifying potential partnership is increasing. This paper suggests a methodology to identify the interested parties as one of Innovation intermediaries to enable open innovation with patent network. To implement the methodology, multi-stage patent citation analysis such as bibliographic coupling and information visualization method such as keyword vector mapping are utilized. This paper has contribution in that it can present meaningful collaboration keywords to identified potential partners in network since not only citation information but also patent textual information is used.Keywords: Open innovation, partner selection, bibliographic coupling, Keyword vector mapping, patent network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17923171 Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor
Authors: Vijay Sodhi, Ajay Bansal
Abstract:
The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.Keywords: Trickle Bed Reactor, Dynamic Liquid Saturation, Foaming, Flow Regime Transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18343170 Unsteadiness Effects on Variable Thrust Nozzle Performance
Authors: A. M. Tahsini, S. T. Mousavi
Abstract:
The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design.
Keywords: Nozzle, Numerical study, Unsteady, Variable thrust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22503169 An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India
Authors: Avadhesh Yadav, V.K. Bajpai
Abstract:
A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.
Keywords: air flow direction, Evacuated tube solar collector, solar air heating, solar thermal utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51963168 Coordinated Multi-Point Scheme Based On Channel State Information in MIMO-OFDM System
Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with fewer resources.
Keywords: Adaptive beam forming, CoMP, LTE-A, ICI reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25133167 An Investigation into Turbine Blade Tip Leakage Flows at High Speeds
Authors: Z. Saleh, E. J. Avital, T. Korakianitis
Abstract:
The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the tip wall and provide flow visualization. RANS computations were carried to provide further insight into the mean flow behavior and to calculate the discharge coefficient which is a measure of the flow leaking over the tip. It is shown that in both geometries of tip the flow separates over the tip to form a separation bubble. The bubble is higher for the cavity tip while a complete shock wave system of oblique waves ending with a normal wave can be seen for the flat tip. The discharge coefficient for the flat tip shows less dependence on the pressure ratio over the blade tip than the cavity tip. However, the discharge coefficient for the cavity tip is lower than that of the flat tip, showing a better ability to reduce the leakage flow and thus increase the turbine efficiency.Keywords: Gas turbine, blade tip leakage flow, transonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23353166 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks
Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta
Abstract:
This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.Keywords: GEO, ns2, Proactive TCP, SACK, Vegas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14293165 Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow
Authors: Aminu J. A. Koguna, Aliyu M. Aliyu, Olawale T. Fajemidupe, Yahaya D. Baba
Abstract:
Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown, this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results.Keywords: Interface height, liquid-liquid flow, two-fluid model, water cut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17903164 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils
Authors: J. Joy, T. H. New, I. H. Ibrahim
Abstract:
A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.Keywords: Computational Fluid Dynamics, Flow separation control, Hydrofoils, Leading-edge protuberances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20163163 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow
Authors: Vai Kuong Sin
Abstract:
Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.
Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15343162 Influence of Outer Corner Radius in Equal Channel Angular Pressing
Authors: Basavaraj V. Patil, Uday Chakkingal, T. S. Prasanna Kumar
Abstract:
Equal Channel Angular Pressing (ECAP) is currently being widely investigated because of its potential to produce ultrafine grained microstructures in metals and alloys. A sound knowledge of the plastic deformation and strain distribution is necessary for understanding the relationships between strain inhomogeneity and die geometry. Considerable research has been reported on finite element analysis of this process, assuming threedimensional plane strain condition. However, the two-dimensional models are not suitable due to the geometry of the dies, especially in cylindrical ones. In the present work, three-dimensional simulation of ECAP process was carried out for six outer corner radii (sharp to 10 mm in steps of 2 mm), with channel angle 105¶Çü▒, for strain hardening aluminium alloy (AA 6101) using ABAQUS/Standard software. Strain inhomogeneity is presented and discussed for all cases. Pattern of strain variation along selected radial lines in the body of the workpiece is presented. It is found from the results that the outer corner has a significant influence on the strain distribution in the body of work-piece. Based on inhomogeneity and average strain criteria, there is an optimum outer corner radius.Keywords: Equal Channel Angular Pressing, Finite Element Analysis, strain inhomogeneity, plastic equivalent strain, ultra fine grain size, aluminium alloy 6101.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22483161 Numerical Analysis on the Performance of Heatsink with Microchannels
Authors: Jer-Huan Jang, Han-Chieh Chiu, Wei-Chung Yeih, Jia-Jui Yang, Chien-Sheng Huang
Abstract:
In this paper, numerical simulation is used to investigate the thermal performance of liquid cooling heatsink with microchannels due to geometric arrangement. Commercial software ICEPAK is utilized for the analysis. The considered parameters include aspect ratio, porosity and the length and height of microchannel. The aspect ratio varies from 3 to 16 and the length of microchannel is 10mm, 14mm, and 18mm. The height of microchannel is 2mm, 3mm and 4mm. It is found short channel have better thermal efficiency than long channel at 490Pa. No matter the length of channel the best aspect ratio is 4. It is also noted that pressure difference at 2940Pa the best aspect ratio from 4 to 8, it means pressure difference affect aspect ratio, effective thermal resistance at low pressure difference but lower effective thermal resistance at high pressure difference.Keywords: thermal resistance, liquid cooling, microchannels, numerical analysis, pressure difference
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21603160 Impact of Personality and Loneliness on Life: Role of Online Flow Experiences
Authors: Asmita Shukla, Soma Parija
Abstract:
The present study examines the mediating effect of online flow experience on the relationship between extraversionintroversion, locus of control and loneliness, and depression and satisfaction with life. The data was obtained using a structured questionnaire prepared by adapting standardized scales available from a sample of 102 engineering students from different technical institutions at Bhubaneswar, India. The results indicate that there is a positive significant relationship between introversion, external locus of control, loneliness, depression and online flow experience, and extraversion, internal locus of control and satisfaction with life. The results also suggest that online flow experience mediates the relationship between the aforementioned variables.Keywords: Life satisfaction and depression, loneliness, online flow experience, personality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101