Search results for: deep learning algorithms
3186 Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments
Authors: Mohammad Shams Esfand Abadi, John Hakon Husøy
Abstract:
Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis can be used to evaluate the mean square performance of the Least Mean Square (LMS) algorithm, its normalized version (NLMS), the family of Affine Projection Algorithms (APA), the Recursive Least Squares (RLS), the Data-Reusing LMS (DR-LMS), its normalized version (NDR-LMS), the Block Least Mean Squares (BLMS), the Block Normalized LMS (BNLMS), the Transform Domain Adaptive Filters (TDAF) and the Subband Adaptive Filters (SAF) in nonstationary environment. Also, we establish the general expressions for the steady-state excess mean square in this environment for all these adaptive algorithms. Finally, we demonstrate through simulations that these results are useful in predicting the adaptive filter performance.Keywords: Adaptive filter, general framework, energy conservation, mean-square performance, nonstationary environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21873185 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22573184 Constructivism Learning Management in Mathematical Analysis Courses
Authors: K. Paisal
Abstract:
The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.
Keywords: Constructivism, learning management, Mathematical Analysis courses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18673183 Acceptance of Mobile Learning: a Respecification and Validation of Information System Success
Authors: Chin-Cheh Yi, Pei-Wen Liao, Chin-Feng Huang, I-Hui Hwang
Abstract:
With the proliferation of mobile computing technology, mobile learning (m-learning) will play a vital role in the rapidly growing electronic learning market. However, the acceptance of m-learning by individuals is critical to the successful implementation of m-learning systems. Thus, there is a need to research the factors that affect users- intention to use m-learning. Based on an updated information system (IS) success model, data collected from 350 respondents in Taiwan were tested against the research model using the structural equation modeling approach. The data collected by questionnaire were analyzed to check the validity of constructs. Then hypotheses describing the relationships between the identified constructs and users- satisfaction were formulated and tested.
Keywords: m-learning, information system success, users' satisfaction, perceived value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19833182 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18313181 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.
Keywords: Control system, hydroponics, machine learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073180 Automatic Vehicle Identification by Plate Recognition
Authors: Serkan Ozbay, Ergun Ercelebi
Abstract:
Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75863179 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix
Authors: Tao Dai, Andy Adler, Behnam Shahrrava
Abstract:
This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.
Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16313178 Collaborative E-Learning with Multiple Imaginary Co-Learner: Design, Issues and Implementation
Authors: Melvin Ballera, Mosbah Mohamed Elssaedi, Ahmed Khalil Zohdy
Abstract:
Collaborative problem solving in e-learning can take in the form of discussion among learner, creating a highly social learning environment and characterized by participation and interactivity. This paper, designed a collaborative learning environment where agent act as co-learner, can play different roles during interaction. Since different roles have been assigned to the agent, learner will assume that multiple co-learner exists to help and guide him all throughout the collaborative problem solving process, but in fact, alone during the learning process. Specifically, it answers the questions what roles of the agent should be incorporated to contribute better learning outcomes, how agent will facilitate the communication process to provide social learning and interactivity and what are the specific instructional strategies that facilitate learner participation, increased skill acquisition and develop critical thinking.Keywords: Collaborative e-learning, collaborative problem solving, , imaginary co-learner, social learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16043177 Services-Oriented Model for the Regulation of Learning
Authors: Mohamed Bendahmane, Brahim Elfalaki, Mohammed Benattou
Abstract:
One of the major sources of learners' professional difficulties is their heterogeneity. Whether on cognitive, social, cultural or emotional level, learners being part of the same group have many differences. These differences do not allow to apply the same learning process at all learners. Thus, an optimal learning path for one, is not necessarily the same for the other. We present in this paper a model-oriented service to offer to each learner a personalized learning path to acquire the targeted skills.
Keywords: Service-oriented architecture, learning path, web service, personalization, trace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20343176 Object Tracking System Using Camshift, Meanshift and Kalman Filter
Authors: Afef Salhi, Ameni Yengui Jammaoussi
Abstract:
This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.
Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82503175 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula
Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan
Abstract:
This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.
Keywords: Simulation-based teaching, hands-on learning, feedback-based learning, scaffolding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17273174 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14943173 Density Clustering Based On Radius of Data (DCBRD)
Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.
Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18753172 Integrated Learning in Engineering Services: A Conceptual Framework
Authors: Satya Pilla
Abstract:
This study explores how the mechanics of learning paves the way to engineering innovation. Theories related to learning in the new product/service innovation are reviewed from an organizational perspective, behavioral perspective, and engineering perspective. From this, an engineering team-s external interactions for knowledge brokering and internal composition for skill balance are examined from a learning and innovation viewpoints. As a result, an integrated learning model is developed by reconciling the theoretical perspectives as well as developing propositions that emphasize the centrality of learning, and its drivers, in the engineering product/service development. The paper also provides a review and partial validation of the propositions using the results of a previously published field study in the aerospace industry.Keywords: Engineering Services, Integrated Learning, NewProduct Development, Service Innovation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12893171 Promoting Reflection through Action Learning in a 3D Virtual World
Authors: R.L. Sanders, L. McKeown
Abstract:
An international cooperation between educators in Australia and the US has led to a reconceptualization of the teaching of a library science course at Appalachian State University. The pedagogy of Action Learning coupled with a 3D virtual learning environment immerses students in a social constructivist learning space that incorporates and supports interaction and reflection. The intent of this study was to build a bridge between theory and practice by providing students with a tool set that promoted personal and social reflection, and created and scaffolded a community of practice. Besides, action learning is an educational process whereby the fifty graduate students experienced their own actions and experience to improve performance.Keywords: action learning, action research, reflection, metacognition, virtual worlds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14223170 The Performance of the Character-Access on the Checking Phase in String Searching Algorithms
Authors: Mahmoud M. Mhashi
Abstract:
A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithmKeywords: Pattern matching, string searching, charactercomparison, character-access, and checking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13083169 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and module based teaching and learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.
Keywords: Computer science education, project and module based, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34523168 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.
Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8133167 Extending E-learning systems based on Clause-Rule model
Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16793166 Using Multimedia in Computer Based Learning (CBL) A Case Study: Teaching Science to Student
Authors: Maryam Honarmand
Abstract:
Regarding to the fast growth of computer, internet, and virtual learning in our country (Iran) and need computer-based learning systems and multimedia tools as an essential part of such education, designing and implementing such systems would help teach different field such as science. This paper describes the basic principle of multimedia. At the end, with a description of learning science to the infant students, the method of this system will be explained.
Keywords: Multimedia tools, computer based learning, science, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14913165 Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space
Authors: Gishantha Thantulage, Tatiana Kalganova, Manissa Wilson
Abstract:
Ant Colony Algorithms have been applied to difficult combinatorial optimization problems such as the travelling salesman problem and the quadratic assignment problem. In this paper gridbased and random-based ant colony algorithms are proposed for automatic 3D hose routing and their pros and cons are discussed. The algorithm uses the tessellated format for the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speeds up computation. The performance of algorithm has been tested on a number of 3D models.Keywords: Ant colony algorithm, Automatic hose routing, tessellated format, RAPID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15793164 A Theory in Optimization of Ad-hoc Routing Algorithms
Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi
Abstract:
In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16723163 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.Keywords: Evolutionary algorithms, genetic algorithm, hydropower, multi-objective, reservoir operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27943162 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20113161 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.
Keywords: E-learning, physiological index, physiological signal, state of learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15143160 Performance Analysis of OQSMS and MDDR Scheduling Algorithms for IQ Switches
Authors: K. Navaz, Kannan Balasubramanian
Abstract:
Due to the increasing growth of internet users, the emerging applications of multicast are growing day by day and there is a requisite for the design of high-speed switches/routers. Huge amounts of effort have been done into the research area of multicast switch fabric design and algorithms. Different traffic scenarios are the influencing factor which affect the throughput and delay of the switch. The pointer based multicast scheduling algorithms are not performed well under non-uniform traffic conditions. In this work, performance of the switch has been analyzed by applying the advanced multicast scheduling algorithm OQSMS (Optimal Queue Selection Based Multicast Scheduling Algorithm), MDDR (Multicast Due Date Round-Robin Scheduling Algorithm) and MDRR (Multicast Dual Round-Robin Scheduling Algorithm). The results show that OQSMS achieves better switching performance than other algorithms under the uniform, non-uniform and bursty traffic conditions and it estimates optimal queue in each time slot so that it achieves maximum possible throughput.Keywords: Multicast, Switch, Delay, Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11653159 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14303158 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems
Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi
Abstract:
In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13763157 A Bi-Objective Model for Location-Allocation Problem within Queuing Framework
Authors: Amirhossein Chambari, Seyed Habib Rahmaty, Vahid Hajipour, Aida Karimi
Abstract:
This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.Keywords: Queuing, Location, Bi-objective, NSGA-II, NRGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276