Search results for: Weighted Least Squares.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 476

Search results for: Weighted Least Squares.

86 Efficient Variants of Square Contour Algorithm for Blind Equalization of QAM Signals

Authors: Ahmad Tariq Sheikh, Shahzad Amin Sheikh

Abstract:

A new distance-adjusted approach is proposed in which static square contours are defined around an estimated symbol in a QAM constellation, which create regions that correspond to fixed step sizes and weighting factors. As a result, the equalizer tap adjustment consists of a linearly weighted sum of adaptation criteria that is scaled by a variable step size. This approach is the basis of two new algorithms: the Variable step size Square Contour Algorithm (VSCA) and the Variable step size Square Contour Decision-Directed Algorithm (VSDA). The proposed schemes are compared with existing blind equalization algorithms in the SCA family in terms of convergence speed, constellation eye opening and residual ISI suppression. Simulation results for 64-QAM signaling over empirically derived microwave radio channels confirm the efficacy of the proposed algorithms. An RTL implementation of the blind adaptive equalizer based on the proposed schemes is presented and the system is configured to operate in VSCA error signal mode, for square QAM signals up to 64-QAM.

Keywords: Adaptive filtering, Blind Equalization, Square Contour Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
85 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, steel shear wall, nonlinear, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
84 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
83 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
82 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining

Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar

Abstract:

The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.

Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
81 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments

Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas

Abstract:

Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.

Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
80 Data Envelopment Analysis with Partially Perfect Objects

Authors: Alexander Y. Vaninsky

Abstract:

This paper presents a simplified version of Data Envelopment Analysis (DEA) - a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object - the one having greatest outputs and smallest inputs. It allows for obtaining an explicit analytical solution and making a step to an absolute efficiency. This paper develops this approach further and introduces a DEA model with Partially Perfect Objects. DEA PPO consecutively eliminates the smallest relative inputs or greatest relative outputs, and applies DEA PO to the reduced collections of indicators. The partial efficiency scores are combined to get the weighted efficiency score. The computational scheme remains simple, like that of DEA PO, but the advantage of the DEA PPO is taking into account all of the inputs and outputs for each actual object. Firm evaluation is considered as an example.

Keywords: Data Envelopment Analysis, Perfect object, Partially perfect object, Partial efficiency, Explicit solution, Simplified algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
79 A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement

Authors: Siyu Wang, Anthony Ward

Abstract:

Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual's academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members' interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members' emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual’s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches.

Keywords: Emotional intelligence, EI, Group EI, multi-method research, teamwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
78 Freighter Aircraft Selection Using Entropic Programming for Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper proposes entropic programming for the freighter aircraft selection problem using the multiple criteria decision analysis method. The study aims to propose a systematic and comprehensive framework by focusing on the perspective of freighter aircraft selection. In order to achieve this goal, an integrated entropic programming approach was proposed to evaluate and rank alternatives. The decision criteria and aircraft alternatives were identified from the research data analysis. The objective criteria weights were determined by the mean weight method and the standard deviation method. The proposed entropic programming model was applied to a practical decision problem for evaluating and selecting freighter aircraft. The proposed entropic programming technique gives robust, reliable, and efficient results in modeling decision making analysis problems. As a result of entropic programming analysis, Boeing B747-8F, a freighter aircraft alternative ( a3), was chosen as the most suitable freighter aircraft candidate.   

Keywords: entropic programming, additive weighted model, multiple criteria decision making analysis, MCDMA, TOPSIS, aircraft selection, freighter aircraft, Boeing B747-8F, Boeing B777F, Airbus A350F

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
77 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension

Authors: Li Zong-Cheng

Abstract:

It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.

Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
76 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique

Authors: A. Jabbari, M. Shakeri, A. Nabavi

Abstract:

In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.

Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
75 Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process

Authors: R.Vinodha S. Abraham Lincoln, J. Prakash

Abstract:

Multi-loop (De-centralized) Proportional-Integral- Derivative (PID) controllers have been used extensively in process industries due to their simple structure for control of multivariable processes. The objective of this work is to design multiple-model adaptive multi-loop PID strategy (Multiple Model Adaptive-PID) and neural network based multi-loop PID strategy (Neural Net Adaptive-PID) for the control of multivariable system. The first method combines the output of multiple linear PID controllers, each describing process dynamics at a specific level of operation. The global output is an interpolation of the individual multi-loop PID controller outputs weighted based on the current value of the measured process variable. In the second method, neural network is used to calculate the PID controller parameters based on the scheduling variable that corresponds to major shift in the process dynamics. The proposed control schemes are simple in structure with less computational complexity. The effectiveness of the proposed control schemes have been demonstrated on the CSTR process, which exhibits dynamic non-linearity.

Keywords: Multiple-model Adaptive PID controller, Multivariableprocess, CSTR process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
74 Arrival and Departure Scheduling at Hub Airports Considering Airlines Level

Authors: A. Nourmohammadzadeh, R. Tavakkoli- Moghaddam

Abstract:

As the air traffic increases at a hub airport, some flights cannot land or depart at their preferred target time. This event happens because the airport runways become occupied to near their capacity. It results in extra costs for both passengers and airlines because of the loss of connecting flights or more waiting, more fuel consumption, rescheduling crew members, etc. Hence, devising an appropriate scheduling method that determines a suitable runway and time for each flight in order to efficiently use the hub capacity and minimize the related costs is of great importance. In this paper, we present a mixed-integer zero-one model for scheduling a set of mixed landing and departing flights (despite of most previous studies considered only landings). According to the fact that the flight cost is strongly affected by the level of airline, we consider different airline categories in our model. This model presents a single objective minimizing the total sum of three terms, namely 1) the weighted deviation from targets, 2) the scheduled time of the last flight (i.e., makespan), and 3) the unbalancing the workload on runways. We solve 10 simulated instances of different sizes up to 30 flights and 4 runways. Optimal solutions are obtained in a reasonable time, which are satisfactory in comparison with the traditional rule, namely First- Come-First-Serve (FCFS) that is far apart from optimality in most cases.

Keywords: Arrival and departure scheduling, Airline level, Mixed-integer model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
73 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Authors: Ghulam Murshid

Abstract:

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids can be potential alternate solvents for carbon dioxide capture from gaseous streams. This is due to its ability to resist oxidative degradation, low volatility and its ionic structure. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermo physical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Keywords: Amino acids, CO2, Global warming, Solubility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3646
72 Improved Feature Processing for Iris Biometric Authentication System

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.

Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
71 Using Mean-Shift Tracking Algorithms for Real-Time Tracking of Moving Images on an Autonomous Vehicle Testbed Platform

Authors: Benjamin Gorry, Zezhi Chen, Kevin Hammond, Andy Wallace, Greg Michaelson

Abstract:

This paper describes new computer vision algorithms that have been developed to track moving objects as part of a long-term study into the design of (semi-)autonomous vehicles. We present the results of a study to exploit variable kernels for tracking in video sequences. The basis of our work is the mean shift object-tracking algorithm; for a moving target, it is usual to define a rectangular target window in an initial frame, and then process the data within that window to separate the tracked object from the background by the mean shift segmentation algorithm. Rather than use the standard, Epanechnikov kernel, we have used a kernel weighted by the Chamfer distance transform to improve the accuracy of target representation and localization, minimising the distance between the two distributions in RGB color space using the Bhattacharyya coefficient. Experimental results show the improved tracking capability and versatility of the algorithm in comparison with results using the standard kernel. These algorithms are incorporated as part of a robot test-bed architecture which has been used to demonstrate their effectiveness.

Keywords: Hume, functional programming, autonomous vehicle, pioneer robot, vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
70 Simulating Dynamics of Thoracolumbar Spine Derived from Life MOD under Haptic Forces

Authors: K. T. Huynh, I. Gibson, W. F. Lu, B. N. Jagdish

Abstract:

In this paper, the construction of a detailed spine model is presented using the LifeMOD Biomechanics Modeler. The detailed spine model is obtained by refining spine segments in cervical, thoracic and lumbar regions into individual vertebra segments, using bushing elements representing the intervertebral discs, and building various ligamentous soft tissues between vertebrae. In the sagittal plane of the spine, constant force will be applied from the posterior to anterior during simulation to determine dynamic characteristics of the spine. The force magnitude is gradually increased in subsequent simulations. Based on these recorded dynamic properties, graphs of displacement-force relationships will be established in terms of polynomial functions by using the least-squares method and imported into a haptic integrated graphic environment. A thoracolumbar spine model with complex geometry of vertebrae, which is digitized from a resin spine prototype, will be utilized in this environment. By using the haptic technique, surgeons can touch as well as apply forces to the spine model through haptic devices to observe the locomotion of the spine which is computed from the displacement-force relationship graphs. This current study provides a preliminary picture of our ongoing work towards building and simulating bio-fidelity scoliotic spine models in a haptic integrated graphic environment whose dynamic properties are obtained from LifeMOD. These models can be helpful for surgeons to examine kinematic behaviors of scoliotic spines and to propose possible surgical plans before spine correction operations.

Keywords: Haptic interface, LifeMOD, spine modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
69 Reconstitute Information about Discontinued Water Quality Variables in the Nile Delta Monitoring Network Using Two Record Extension Techniques

Authors: Bahaa Khalil, Taha B. M. J. Ouarda, André St-Hilaire

Abstract:

The world economic crises and budget constraints have caused authorities, especially those in developing countries, to rationalize water quality monitoring activities. Rationalization consists of reducing the number of monitoring sites, the number of samples, and/or the number of water quality variables measured. The reduction in water quality variables is usually based on correlation. If two variables exhibit high correlation, it is an indication that some of the information produced may be redundant. Consequently, one variable can be discontinued, and the other continues to be measured. Later, the ordinary least squares (OLS) regression technique is employed to reconstitute information about discontinued variable by using the continuously measured one as an explanatory variable. In this paper, two record extension techniques are employed to reconstitute information about discontinued water quality variables, the OLS and the Line of Organic Correlation (LOC). An empirical experiment is conducted using water quality records from the Nile Delta water quality monitoring network in Egypt. The record extension techniques are compared for their ability to predict different statistical parameters of the discontinued variables. Results show that the OLS is better at estimating individual water quality records. However, results indicate an underestimation of the variance in the extended records. The LOC technique is superior in preserving characteristics of the entire distribution and avoids underestimation of the variance. It is concluded from this study that the OLS can be used for the substitution of missing values, while LOC is preferable for inferring statements about the probability distribution.

Keywords: Record extension, record augmentation, monitoringnetworks, water quality indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
68 Towards the Use of Software Product Metrics as an Indicator for Measuring Mobile Applications Power Consumption

Authors: Ching Kin Keong, Koh Tieng Wei, Abdul Azim Abd. Ghani, Khaironi Yatim Sharif

Abstract:

Maintaining factory default battery endurance rate over time in supporting huge amount of running applications on energy-restricted mobile devices has created a new challenge for mobile applications developer. While delivering customers’ unlimited expectations, developers are barely aware of efficient use of energy from the application itself. Thus, developers need a set of valid energy consumption indicators in assisting them to develop energy saving applications. In this paper, we present a few software product metrics that can be used as an indicator to measure energy consumption of Android-based mobile applications in the early of design stage. In particular, Trepn Profiler (Power profiling tool for Qualcomm processor) has used to collect the data of mobile application power consumption, and then analyzed for the 23 software metrics in this preliminary study. The results show that McCabe cyclomatic complexity, number of parameters, nested block depth, number of methods, weighted methods per class, number of classes, total lines of code and method lines have direct relationship with power consumption of mobile application.

Keywords: Battery endurance, software metrics, mobile application, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
67 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
66 Expelling Policy Based Buffer Control during Congestion in Differentiated Service Routers

Authors: Kumar Padmanabh, Rajarshi Roy

Abstract:

In this paper a special kind of buffer management policy is studied where the packet are preempted even when sufficient space is available in the buffer for incoming packets. This is done to congestion for future incoming packets to improve QoS for certain type of packets. This type of study has been done in past for ATM type of scenario. We extend the same for heterogeneous traffic where data rate and size of the packets are very versatile in nature. Typical example of this scenario is the buffer management in Differentiated Service Router. There are two aspects that are of interest. First is the packet size: whether all packets have same or different sizes. Second aspect is the value or space priority of the packets, do all packets have the same space priority or different packets have different space priorities. We present two types of policies to achieve QoS goals for packets with different priorities: the push out scheme and the expelling scheme. For this work the scenario of packets of variable length is considered with two space priorities and main goal is to minimize the total weighted packet loss. Simulation and analytical studies show that, expelling policies can outperform the push out policies when it comes to offering variable QoS for packets of two different priorities and expelling policies also help improve the amount of admissible load. Some other comparisons of push out and expelling policies are also presented using simulations.

Keywords: Buffer Management Policy, Diffserv, ATM, Pushout Policy, Expeling Policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
65 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
64 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: Time history dynamic analysis, basic modal displacement, earthquake induced demands, shear steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
63 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
62 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
61 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
60 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process

Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar

Abstract:

The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.

Keywords: Adaptive re-use of buildings, assessment model, disaster management, temporary housing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
59 Mixed Model Assembly Line Sequencing In Make to Order System with Available to Promise Consideration

Authors: N. Manavizadeh, A. Dehghani, M. Rabbani

Abstract:

Mixed model assembly lines (MMAL) are a type of production line where a variety of product models similar in product characteristics are assembled. The effective design of these lines requires that schedule for assembling the different products is determined. In this paper we tried to fit the sequencing problem with the main characteristics of make to order (MTO) environment. The problem solved in this paper is a multiple objective sequencing problem in mixed model assembly lines sequencing using weighted Sum Method (WSM) using GAMS software for small problem and an effective GA for large scale problems because of the nature of NP-hardness of our problem and vast time consume to find the optimum solution in large problems. In this problem three practically important objectives are minimizing: total utility work, keeping a constant production rate variation, and minimizing earliness and tardiness cost which consider the priority of each customer and different due date which is a real situation in mixed model assembly lines and it is the first time we consider different attribute to prioritize the customers which help the company to reduce the cost of earliness and tardiness. This mechanism is a way to apply an advance available to promise (ATP) in mixed model assembly line sequencing which is the main contribution of this paper.

Keywords: Available to promise, Earliness & Tardiness, GA, Mixed-Model assembly line Sequencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
58 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok

Abstract:

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
57 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut

Abstract:

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646