Search results for: Object Detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2044

Search results for: Object Detection.

1654 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: Antenna array, signal detection, ToA, AoA estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
1653 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods

Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López

Abstract:

This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.

Keywords: Application, MATLAB, make up, model, recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
1652 Extracting Human Body based on Background Estimation in Modified HLS Color Space

Authors: Jang-Hee Yoo, Doosung Hwang, Jong-Wook Han, Ki-Young Moon

Abstract:

The ability to recognize humans and their activities by computer vision is a very important task, with many potential application. Study of human motion analysis is related to several research areas of computer vision such as the motion capture, detection, tracking and segmentation of people. In this paper, we describe a segmentation method for extracting human body contour in modified HLS color space. To estimate a background, the modified HLS color space is proposed, and the background features are estimated by using the HLS color components. Here, the large amount of human dataset, which was collected from DV cameras, is pre-processed. The human body and its contour is successfully extracted from the image sequences.

Keywords: Background Subtraction, Human Silhouette Extraction, HLS Color Space, and Object Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
1651 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.

Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9157
1650 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: Outlier detection, generative adversary networks, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
1649 A New Voting Approach to Texture Defect Detection Based on Multiresolutional Decomposition

Authors: B. B. M. Moasheri, S. Azadinia

Abstract:

Wavelets have provided the researchers with significant positive results, by entering the texture defect detection domain. The weak point of wavelets is that they are one-dimensional by nature so they are not efficient enough to describe and analyze two-dimensional functions. In this paper we present a new method to detect the defect of texture images by using curvelet transform. Simulation results of the proposed method on a set of standard texture images confirm its correctness. Comparing the obtained results indicates the ability of curvelet transform in describing discontinuity in two-dimensional functions compared to wavelet transform

Keywords: Curvelet, Defect detection, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1648 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: Image processing technique, Feature detections, Surface registrations, Capturing multi-view images, Production costs, and Manufacturing processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
1647 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
1646 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects

Authors: Avishai Sintov, Roland Menassa, Amir Shapiro

Abstract:

Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.

Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1645 Using Electrical Impedance Tomography to Control a Robot

Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi

Abstract:

Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.

Keywords: Electrical impedance tomography, EIT, Surgeon robot, image processing of Electrical impedance tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
1644 Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography

Authors: E. B. Jo, J. H. Lee, J. Y. Park, S. M. Kim

Abstract:

In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.

Keywords: Mass Type Breast Cancer, Mammography, Maximum Likelihood Estimation (MLE), Ranklets, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
1643 The Robot Hand System that can Control Grasping Power by SEMG

Authors: Tsubasa Seto, Kentaro Nagata, Kazushige Magatani

Abstract:

SEMG (Surface Electromyogram) is one of the bio-signals and is generated from the muscle. And there are many research results that use forearm EMG to detect hand motions. In this paper, we will talk about our developed the robot hand system that can control grasping power by SEMG. In our system, we suppose that muscle power is proportional to the amplitude of SEMG. The power is estimated and the grip power of a robot hand is able to be controlled using estimated muscle power in our system. In addition, to perform a more precise control can be considered to build a closed loop feedback system as an object to a subject to pressure from the edge of hand. Our objectives of this study are the development of a method that makes perfect detection of the hand grip force possible using SEMG patterns, and applying this method to the man-machine interface.

Keywords: SEMG, multi electrode, robot hand, power control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
1642 An Efficient Method of Shot Cut Detection

Authors: Lenka Krulikovská, Jaroslav Polec

Abstract:

In this paper we present a method of abrupt cut detection with a novel logic of frames- comparison. Actual frame is compared with its motion estimated prediction instead of comparison with successive frame. Four different similarity metrics were employed to estimate the resemblance of compared frames. Obtained results were evaluated by standard used measures of test accuracy and compared with existing approach. Based on the results, we claim the proposed method is more effective and Pearson correlation coefficient obtained the best results among chosen similarity metrics.

Keywords: Abrupt cut, mutual information, shot cut detection, Pearson correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1641 Interactive Chinese Character Learning System though Pictograph Evolution

Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang

Abstract:

This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.

Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1640 Evaluation of Graph-based Analysis for Forest Fire Detections

Authors: Young Gi Byun, Yong Huh, Kiyun Yu, Yong Il Kim

Abstract:

Spatial outliers in remotely sensed imageries represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA-s AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. This point is what distinguishes our approach from the traditional fire detection methods. In this paper, we propose a graph-based forest fire detection algorithm which is based on spatial outlier detection methods, and test the proposed algorithm to evaluate its applicability. For this the ordinary scatter plot and Moran-s scatter plot were used. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.

Keywords: Spatial Outlier Detection, MODIS, Forest Fire

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
1639 A Discriminatory Rewarding Mechanism for Sybil Detection with Applications to Tor

Authors: Asim Kumar Pal, Debabrata Nath, Sumit Chakraborty

Abstract:

This paper presents an economic game for sybil detection in a distributed computing environment. Cost parameters reflecting impacts of different sybil attacks are introduced in the sybil detection game. The optimal strategies for this game in which both sybil and non-sybil identities are expected to participate are devised. A cost sharing economic mechanism called Discriminatory Rewarding Mechanism for Sybil Detection is proposed based on this game. A detective accepts a security deposit from each active agent, negotiates with the agents and offers rewards to the sybils if the latter disclose their identity. The basic objective of the detective is to determine the optimum reward amount for each sybil which will encourage the maximum possible number of sybils to reveal themselves. Maintaining privacy is an important issue for the mechanism since the participants involved in the negotiation are generally reluctant to share their private information. The mechanism has been applied to Tor by introducing a reputation scoring function.

Keywords: Game theory, Incentive mechanism, Reputation, Sybil Attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1638 Medical Advances in Diagnosing Neurological and Genetic Disorders

Authors: Simon B. N. Thompson

Abstract:

Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.

Keywords: Cortisol, Neurological Disease, Retinoblastoma, Thompson Cortisol Hypothesis, Yawning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
1637 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
1636 A Cognitive Measurement of Complexity and Comprehension for Object-Oriented Code

Authors: Amit Kumar Jakhar, Kumar Rajnish

Abstract:

Inherited complexity is one of the difficult tasks in software engineering field. Further, it is said that there is no physical laws or standard guidelines suit for designing different types of software. Hence, to make the software engineering as a matured engineering discipline like others, it is necessary that it has its own theoretical frameworks and laws. Software designing and development is a human effort which takes a lot of time and considers various parameters for successful completion of the software. The cognitive informatics plays an important role for understanding the essential characteristics of the software. The aim of this work is to consider the fundamental characteristics of the source code of Object-Oriented software i.e. complexity and understandability. The complexity of the programs is analyzed with the help of extracted important attributes of the source code, which is further utilized to evaluate the understandability factor. The aforementioned characteristics are analyzed on the basis of 16 C++ programs by distributing them to forty MCA students. They all tried to understand the source code of the given program and mean time is taken as the actual time needed to understand the program. For validation of this work, Briand’s framework is used and the presented metric is also evaluated comparatively with existing metric which proves its robustness.

Keywords: Software metrics, object-oriented, complexity, cognitive weight, understandability, basic control structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
1635 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
1634 A Real-Time Image Change Detection System

Authors: Madina Hamiane, Amina Khunji

Abstract:

Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.

Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
1633 Genetic-based Anomaly Detection in Logs of Process Aware Systems

Authors: Hanieh Jalali, Ahmad Baraani

Abstract:

Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.

Keywords: Anomaly Detection, Genetic Algorithm, ProcessAware Systems, Process Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
1632 Cosastudio: A Software Architecture Modeling Tool

Authors: Adel Smeda, Adel Alti, Mourad Oussalah, Abdallah Boukerram

Abstract:

A key aspect of the design of any software system is its architecture. An architecture description provides a formal model of the architecture in terms of components and connectors and how they are composed together. COSA (Component-Object based Software Structures), is based on object-oriented modeling and component-based modeling. The model improves the reusability by increasing extensibility, evolvability, and compositionality of the software systems. This paper presents the COSA modelling tool which help architects the possibility to verify the structural coherence of a given system and to validate its semantics with COSA approach.

Keywords: Software Architecture, Architecture Description Languages, UML, Components, Connectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1631 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment

Authors: M. Salman, B. Budiardjo, K. Ramli

Abstract:

Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.

Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939
1630 A Human Activity Recognition System Based On Sensory Data Related to Object Usage

Authors: M. Abdullah-Al-Wadud

Abstract:

Sensor-based Activity Recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.

Keywords: Naïve Bayesian-based classification, Activity recognition, sensor data, object-usage model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1629 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
1628 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
1627 Integrated Method for Detection of Unknown Steganographic Content

Authors: Magdalena Pejas

Abstract:

This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.

Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
1626 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
1625 Identification of Flexographic-printed Newspapers with NIR Spectral Imaging

Authors: Raimund Leitner, Susanne Rosskopf

Abstract:

Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.

Keywords: spectral imaging, imaging spectroscopy, NIR, waterbasedflexographic, flexo-printed, recovered paper, real-time classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545