Search results for: Maximum General Weighted Moving Average
4336 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19574335 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.
Keywords: ARIMA, electricity consumption, forecasting models, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874334 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line
Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh
Abstract:
Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22034333 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20984332 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air
Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli
Abstract:
Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.
Keywords: Numerical modelling, source of pollution, dust propagation, western light air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4924331 Spectrum Analysis with Monte Cralo Simulation, BEAMnrc, for Low Energy X-RAY
Authors: Z. Salehi Dehyagani, A. L. Yusoff
Abstract:
BEAMnrc was used to calculate the spectrum and HVL for X-ray Beam during low energy X-ray radiation using tube model: SRO 33/100 /ROT 350 Philips. The results of BEAMnrc simulation and measurements were compared to the IPEM report number 78 and SpekCalc software. Three energies 127, 103 and 84 Kv were used. In these simulation a tungsten anode with 1.2 mm for Be window were used as source. HVLs were calculated from BEAMnrc spectrum with air Kerma method for four different filters. For BEAMnrc one billion particles were used as original particles for all simulations. The results show that for 127 kV, there was maximum 5.2 % difference between BEAMnrc and Measurements and minimum was 0.7% .the maximum 9.1% difference between BEAMnrc and IPEM and minimum was 2.3% .The maximum difference was 3.2% between BEAMnrc and SpekCal and minimum was 2.8%. The result show BEAMnrc was able to satisfactory predict the quantities of Low energy Beam as well as high energy X-ray radiation.Keywords: BEAMnr , Monte Carlo , HVL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30554330 Analysis of Rural Roads in Developing Countries Using Principal Component Analysis and Simple Average Technique in the Development of a Road Safety Performance Index
Authors: Muhammad Tufail, Jawad Hussain, Hammad Hussain, Imran Hafeez, Naveed Ahmad
Abstract:
Road safety performance index is a composite index which combines various indicators of road safety into single number. Development of a road safety performance index using appropriate safety performance indicators is essential to enhance road safety. However, a road safety performance index in developing countries has not been given as much priority as needed. The primary objective of this research is to develop a general Road Safety Performance Index (RSPI) for developing countries based on the facility as well as behavior of road user. The secondary objectives include finding the critical inputs in the RSPI and finding the better method of making the index. In this study, the RSPI is developed by selecting four main safety performance indicators i.e., protective system (seat belt, helmet etc.), road (road width, signalized intersections, number of lanes, speed limit), number of pedestrians, and number of vehicles. Data on these four safety performance indicators were collected using observation survey on a 20 km road section of the National Highway N-125 road Taxila, Pakistan. For the development of this composite index, two methods are used: a) Principal Component Analysis (PCA) and b) Equal Weighting (EW) method. PCA is used for extraction, weighting, and linear aggregation of indicators to obtain a single value. An individual index score was calculated for each road section by multiplication of weights and standardized values of each safety performance indicator. However, Simple Average technique was used for weighting and linear aggregation of indicators to develop a RSPI. The road sections are ranked according to RSPI scores using both methods. The two weighting methods are compared, and the PCA method is found to be much more reliable than the Simple Average Technique.
Keywords: Aggregation, index score, indicators, principal component analysis, weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5754329 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14214328 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets
Authors: Sajjad Seifoori
Abstract:
Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).Keywords: Impact, molecular dynamic, graphene, nanotube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10854327 Nonconforming Control Charts for Zero-Inflated Poisson Distribution
Authors: N. Katemee, T. Mayureesawan
Abstract:
This paper developed the c-Chart based on a Zero- Inflated Poisson (ZIP) processes that approximated by a geometric distribution with parameter p. The p estimated that fit for ZIP distribution used in calculated the mean, median, and variance of geometric distribution for constructed the c-Chart by three difference methods. For cg-Chart, developed c-Chart by used the mean and variance of the geometric distribution constructed control limits. For cmg-Chart, the mean used for constructed the control limits. The cme- Chart, developed control limits of c-Chart from median and variance values of geometric distribution. The performance of charts considered from the Average Run Length and Average Coverage Probability. We found that for an in-control process, the cg-Chart is superior for low level of mean at all level of proportion zero. For an out-of-control process, the cmg-Chart and cme-Chart are the best for mean = 2, 3 and 4 at all level of parameter.
Keywords: average coverage probability, average run length, geometric distribution, zero-inflated poisson distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24154326 RAPD Analysis of Genetic Diversity of Castor Bean
Authors: M. Vivodík, Ž. Balážová, Z. Gálová
Abstract:
The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.
Keywords: Dendrogram, polymorphism, RAPD technique, Ricinus communis L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26334325 Maximum Water Hammer Sensitivity Analysis
Authors: Jalil Emadi, Abbas Solemani
Abstract:
Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.Keywords: Pressure Wave, Water Hammer, Sensitivity Analysis, Hammer Software, Kuhrang, Cheshme Morvarid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32784324 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach
Authors: Shih-Yi Chao
Abstract:
The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14594323 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23204322 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern
Authors: Rupesh K. Gopal, Saroj K. Meher
Abstract:
In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28144321 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator
Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang
Abstract:
This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22114320 The Study of the Intelligent Fuzzy Weighted Input Estimation Method Combined with the Experiment Verification for the Multilayer Materials
Authors: Ming-Hui Lee, Tsung-Chien Chen, Tsu-Ping Yu, Horng-Yuan Jang
Abstract:
The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux of the multilayer materials as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using the copper sample which is stacked up 4 aluminum samples with different thicknesses. Furthermore, the bottoms of copper samples are heated by applying the standard heat source, and the temperatures on the tops of aluminum are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of copper samples. The influence on the estimation caused by the temperature measurement of the sample with different thickness, the processing noise covariance Q, the weighting factor γ , the sampling time interval Δt , and the space discrete interval Δx , will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input of the multilayer materials.Keywords: Multilayer Materials, Input Estimation Method, IHCP, Heat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12414319 U.S. Supreme Court Justices and Partisanship: Support for the President and Solicitor General
Authors: James Meernik, Joseph Ignagni, Rebecca Deen
Abstract:
This paper analyzes the extent to which the justices of the U.S. Supreme Court cast votes that support the positions of the president, or more generally the Executive Branch. Can presidents count on such deference from those justices they nominate or those whom are nominated by other presidents of the same party? Or, do the justices demonstrate judicial independence and impartiality such that they are not so predisposed to vote in favor of arguments of their nominating president-s party? The results suggest that while in general the justices do not exhibit any marked tendency to partisan support of presidents, more recent and conservative Supreme Court justices are significantly more likely to support Republican presidents.Keywords: Separation of Powers, Solicitor General, U.S. President
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14234318 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.
Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11784317 Bayesian Inference for Phase Unwrapping Using Conjugate Gradient Method in One and Two Dimensions
Authors: Yohei Saika, Hiroki Sakaematsu, Shota Akiyama
Abstract:
We investigated statistical performance of Bayesian inference using maximum entropy and MAP estimation for several models which approximated wave-fronts in remote sensing using SAR interferometry. Using Monte Carlo simulation for a set of wave-fronts generated by assumed true prior, we found that the method of maximum entropy realized the optimal performance around the Bayes-optimal conditions by using model of the true prior and the likelihood representing optical measurement due to the interferometer. Also, we found that the MAP estimation regarded as a deterministic limit of maximum entropy almost achieved the same performance as the Bayes-optimal solution for the set of wave-fronts. Then, we clarified that the MAP estimation perfectly carried out phase unwrapping without using prior information, and also that the MAP estimation realized accurate phase unwrapping using conjugate gradient (CG) method, if we assumed the model of the true prior appropriately.
Keywords: Bayesian inference using maximum entropy, MAP estimation using conjugate gradient method, SAR interferometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17534316 Comparison of Indoor and Outdoor Air Quality in Children Homes at Prenatal Period and One Year Old
Authors: S. Lakestani, B. Karakas, S. Acar Vaizoglu, B. Guciz Dogan, C. Guler, B. Sekerel, A. Taner, G. Gullu
Abstract:
Abstract–Indoor air (VOCs) samples were collected simultaneously from variety of indoors (e.g. living rooms, baby-s rooms) and outdoor environments which were voluntarily selected from the houses in which pregnant residents live throughout Ankara. This is the first comprehensive study done in Turkey starting from prenatal period and continued till the babies had one year old. VOCs levels were measured over 76 homes. Air samples were collected in Tenax TA sorbent filled tubes with active sampling method and analyzed with Thermal Desorber and Gas Chromatography/Mass spectrometry (TD-GC/MS). At the first sampling period in the baby-s rooms maximum concentration of toluene was measured about 240.77μg.m-3 and in the living rooms maximum concentration of naphthalene was 180.24μg.m-3. At the second sampling period in the baby-s rooms maximum concentration of toluene was measured about 144.97μg.m-3 and in the living rooms maximum concentration of naphthalene was 247.89μg.m-3. Concentration of TVOCs in the first period was generally higher than the second period.Keywords: Indoor Air, Volatile Organic Compounds (VOCs), Gas Chromatography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20034315 Assessment of the Efficiency of Virtual Orthodontic Consultations during COVID-19
Abstract:
Aims: We aimed to assess the efficiency of ‘Attend Anywhere’ orthodontic clinics within a district general hospital during COVID- 19. Our secondary aim was to pilot a questionnaire to assess patient satisfaction with virtual orthodontic appointments. Design: The study design is a service evaluation including pilot questionnaire. Methods: The average number of patients seen per virtual clinic and the number of patients failing to attend was compared to face-to-face clinics. The capability of virtual appointments to be successful in preventing the need for a face-to-face appointment was assessed. Patients were invited to complete a telephone pilot questionnaire focusing on patient satisfaction and accessibility. Results: There was a small increase in the number of patients failing to attend virtual appointments, with a third of the patients who did not attend failing to receive the appointment link. 81.9% of virtual clinic appointments were successful and prevented the need for a face-to-face appointment. Overall patients were very satisfied with their virtual orthodontic appointment and the majority required no assistance to access the service. Conclusions: The use of ‘Attend Anywhere’ clinics in orthodontics offers patients and clinicians an effective and efficient alternative to face-to-face appointments that patients on average find easy to use and completely satisfactory.
Keywords: Clinics, COVID-19, orthodontics, patient satisfaction, virtual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6464314 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality
Authors: Georgi Bebrov, Rozalina Dimova
Abstract:
In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.Keywords: Quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9804313 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ouldcherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: Fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21074312 Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FPgrowth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.
Keywords: Association Rules, FP-growth, Multiple minimum supports, Weka Tool
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33224311 Mobile Robot Path Planning in a 2-Dimentional Mesh
Authors: Doraid Dalalah
Abstract:
A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.Keywords: Mobile robot, Path Planning, Mesh, Potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19294310 Technique for Grounding System Design in Distribution Substation
Authors: N. Rugthaicharoencheep, A. Charlangsut, B. Ainsuk, A. Phayomhom
Abstract:
This paper presents the significant factor and give some suggestion that should know before design. The main objective of this paper is guide the first step for someone who attends to design of grounding system before study in details later. The overview of grounding system can protect damage from fault such as can save a human life and power system equipment. The unsafe conditions have three cases. Case 1) maximum touch voltage exceeds the safety criteria. In this case, the conductor compression ratio of the ground gird should be first adjusted to have optimal spacing of ground grid conductors. If it still over limit, earth resistivity should be consider afterward. Case 2) maximum step voltage exceeds the safety criteria. In this case, increasing the number of ground grid conductors around the boundary can solve this problem. Case 3) both of maximum touch and step voltage exceed the safety criteria. In this case, follow the solutions explained in case 1 and case 2. Another suggestion, vary depth of ground grid until maximum step and touch voltage do not exceed the safety criteria.Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35344309 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.Keywords: Maximum Likelihood, nonlinear, parameters, stall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22194308 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor
Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh
Abstract:
In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.
Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22524307 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes
Authors: V. Churkin, M. Lopatin
Abstract:
The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886