Search results for: Heat index
1917 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.
Keywords: ANSYS-Fluent, hydrodynamic behavior, SSHE, thermal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9251916 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate
Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom
Abstract:
The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.
Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161915 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path
Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon
Abstract:
The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24401914 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat
Abstract:
A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2.
Keywords: Organic Rankine Cycle, thermal efficiency, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40581913 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
High pressure carbon dioxide (CO2) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO2 concentration, CO2 loading, reboiler power supply and regeneration heat duty to choose the most efficient solution in terms of CO2 removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that PZ in addition to the mixture of PZ and monoethanolamine (MEA) demand the highest regeneration heat duty compared with other studied single and blended amine solutions respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO2 content in the outlet gas, rich-CO2 loading and regeneration heat duty.
Keywords: Absorption, amine solutions, Aspen HYSYS, CO2 loading, piperazine, regeneration heat duty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6151912 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources
Authors: Samad Jafarmadar, Amin Habibzadeh
Abstract:
A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.
Keywords: Combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8601911 Analysis of Food Security Situation among Nigerian Rural Farmers
Authors: Victoria A. Okwoche, Benjamin C. Asogwa
Abstract:
This paper analysed the food security situation among Nigerian rural farmers. Data collected on 202 rural farmers from Benue State were analysed using descriptive and inferential statistics. The study revealed that majority of the respondents (60.83%) had medium dietary diversity. Furthermore, household daily calorie requirement for the food secure households was 10,723 and the household daily calorie consumption was 12,598, with a surplus index of 0.04. The food security index was 1.16. The Household daily per capita calorie consumption was 3,221.2. For the food insecure households, the household daily calorie requirement was 20,213 and the household daily calorie consumption was 17,393. The shortfall index was 0.14. The food security index was 0.88. The Household daily per capita calorie consumption was 2,432.8. The most commonly used coping strategies during food stress included intercropping (99.2%), reliance on less preferred food (98.1%), limiting portion size at meal times (85.8%) and crop diversification (70.8%).Keywords: Analysis, food security, rural areas, farmers, Nigeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29131910 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio
Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot
Abstract:
In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.Keywords: Aspect Ratio, Channel, Jet, Mixed convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21781909 Economic Factorial Analysis of CO2 Emissions: The Divisia Index with Interconnected Factors Approach
Authors: Alexander Y. Vaninsky
Abstract:
This paper presents a method of economic factorial analysis of the CO2 emissions based on the extension of the Divisia index to interconnected factors. This approach, contrary to the Kaya identity, considers three main factors of the CO2 emissions: gross domestic product, energy consumption, and population - as equally important, and allows for accounting of all of them simultaneously. The three factors are included into analysis together with their carbon intensities that allows for obtaining a comprehensive picture of the change in the CO2 emissions. A computer program in R-language that is available for free download serves automation of the calculations. A case study of the U.S. carbon dioxide emissions is used as an example.
Keywords: CO2 emissions, Economic analysis, Factorial analysis, Divisia index, Interconnected factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591908 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm
Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad
Abstract:
This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24791907 Thermophoresis Particle Precipitate on Heated Surfaces
Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak
Abstract:
This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.
Keywords: Thermophoresis, porous medium, variable surface heat flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22531906 Effect of Heat Treatment on the Phase Formation of La0.6Sr0.4CoO3-α
Authors: A. A. Samat, N. A. Abdullah, M. A. M. Ishak, N. Osman
Abstract:
Powder of La0.6Sr0.4CoO3-α (LSCO) was synthesized by a combined citrate-EDTA method. The as-synthesized LSCO powder was calcined, respectively at temperatures of 800, 900 and 1000 °C with different heating/cooling rates which are 2, 5, 10 and 15 °C min-1. The effects of heat treatments on the phase formation of perovskite phase of LSCO were investigated by powder X-ray diffraction (XRD). The XRD patterns revealed that the rate of 5 °C min-1 is the optimum heating/cooling rate to obtain a single perovskite phase of LSCO with calcination temperature of 800 °C. This result was confirmed by a thermogravimetric analysis (TGA) as it showed a complete decomposition of intermediate compounds to form oxide material was also observed at 800 °C.Keywords: La0.6Sr0.4CoO3-α, heat treatment, perovskite-type oxide, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44041905 Experimental Investigation of Karanja Oil as a Fuel for Diesel Engine-Using Shell and Tube Heat Exchanger
Authors: Nabnit Panigrahi, M. K. Mohanty, S. K. Acharya, S. R Mishra, R. C. Mohanty
Abstract:
This paper presents experimental investigation carried out on an unmodified four stroke diesel engine running with preheated straight vegetable oil (SVO) of Karanja. The viscosity of straight karanja oil was reduced by preheating the oil up to 1600C under different load condition. The preheating was done with the help of a Shell and Tube heat exchanger equipment without using any external power source. The heat exchanger was designed in the lab and the heating source was by waste exhaust gas from engine. The experimental results data were analyzed by using 20% blends of svo of Karanja with 80% diesel by volume and 100% preheated svo of karanja for various parameters like specific fuel consumption, brake thermal efficiency and emission of exhaust gas like CO, CO2, HC and NOx. The results indicated that by using straight karanja oil, the emission parameter increases as compared to diesel but regarding engine performance it was found to be very close to that of diesel. All total it can be a replacement of diesel with a small efficiency drop.
Keywords: Karanja oil, Performance analysis, Shell &Tube heat exchanger, SVO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30571904 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA
Authors: Deepti Tamrakar, Pritee Khanna
Abstract:
This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401903 Natural Convection Heat Transfer from Inclined Cylinders: A Unified Correlation
Authors: Neetu Rani, Hema Setia, Marut Dutt. R.K. Wanchoo
Abstract:
An empirical correlation for predicting the heat transfer coefficient for a cylinder under free convection, inclined at any arbitrary angle with the horizontal has been developed in terms of Nusselt number, Prandtl number and Grashof number. Available experimental data was used to determine the parameters for the proposed correlation. The proposed correlation predicts the available data well within ±10%, for Prandtl number in the range 0.68-0.72 and Grashof number in the range 1.4×104–1.2×1010.
Keywords: Heat transfer, inclined cylinders, natural convection, Nusselt number, Prandtl number, Grashof number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59531902 Heat and Mass Transfer in a Solar Dryer with Biomass Backup Burner
Authors: Andrew R.H. Rigit, Patrick T.K. Low
Abstract:
Majority of pepper farmers in Malaysia are using the open-sun method for drying the pepper berries. This method is time consuming and exposed the berries to rain and contamination. A maintenance-friendly and properly enclosed dryer is therefore desired. A dryer design with a solar collector and a chimney was studied and adapted to suit the needs of small-scale pepper farmers in Malaysia. The dryer will provide an environment with an optimum operating temperature meant for drying pepper berries. The dryer model was evaluated by using commercially available computational fluid dynamic (CFD) software in order to understand the heat and mass transfer inside the dryer. Natural convection was the only mode of heat transportation considered in this study as in accordance to the idea of having a simple and maintenance-friendly design. To accommodate the effect of low buoyancy found in natural convection driers, a biomass burner was integrated into the solar dryer design.Keywords: Computational fluid dynamics, heat and masstransfer, solar dryer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36641901 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small and Medium-Sized Enterprises
Authors: A. Skouloudis, K. Evangelinos, W. Leal-Filho, P. Vouros, I. Nikolaou, T. Tsalis
Abstract:
In this study a composite index of factors linked to the resilience capacity of small and medium-sized enterprises (SMEs) to flooding is proposed and tested. A sample of SMEs located in flood-prone areas (n = 391) was administered a structured questionnaire pertaining to cognitive, managerial and contextual factors that affect the ability to prepare, withstand, and recover from flooding events. Through the proposed index, a bottom-up, self-assessment approach is set forth that could assist in standardizing such assessments with an overarching aim of reducing the vulnerability of SMEs to floods. This is achieved by examining critical internal and external parameters affecting SMEs’ resilience capacity which is particularly important taking into account the limited resources these enterprises tend to have at their disposal and that they can generate single points of failure in dense supply chain networks.
Keywords: Floods, SMEs, organizational resilience capacity, index development, Greece.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4711900 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture
Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani
Abstract:
The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated. Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.
Keywords: Carbon capture and storage, oxy-combustion, netpower cycle, oxyturbine power cycles, heat exchanger design, supercritical carbon dioxide, pinch point analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16881899 Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling
Authors: Y. T. Yang, H. S. Peng, H. T. Hsu
Abstract:
This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .
Keywords: Heat sink, Optimum, Electronics cooling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37051898 Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium
Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury
Abstract:
This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.
Keywords: Fluid suction, heat and mass transfer, inclined porous plate, MHD, mixed convection, porous medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22761897 Correlation between Heat Treatment, Microstructure and Properties of Trip-Assisted Steels
Authors: A. Talapatra, N. R. Bandhyopadhyay, J. Datta
Abstract:
In the present study, two TRIP-assisted steels were designated as A (having no Cr and Cu content) and B (having higher Ni, Cr and Cu content) heat treated under different conditions, and the correlation between its heat treatment, microstructure and properties were investigated. Micro structural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. Non-destructive electrochemical and ultrasonic testing on two TRIP-assisted steels was used to find out corrosion and mechanical properties of different alter microstructure phase’s steels. Furthermore, micro structural studies accompanied by the evaluation of mechanical properties revealed that steels having martensite phases with higher corrosive and hardness value were less sound velocity and also steel’s microstructure having finer grains that was more grain boundary was less corrosion resistance. Steel containing more Cu, Ni and Cr was less corrosive compared to other steels having same processing or microstructure.
Keywords: TRIP-assisted steels, heat treatment, corrosion, electrochemical techniques, micro-structural characterization, non-destructive (ultrasonic) technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30161896 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption
Authors: Raphael Zanella
Abstract:
This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit time marching. The code is verified by space and time convergence tests using a manufactured solution. An example problem is solved with an axisymmetric formulation and with a 3D formulation. Both formulations lead to the same result but the code based on the axisymmetric formulation is mush faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest of using an axisymmetric formulation when it is possible.
Keywords: Axisymmetric problem, continuous finite elements, heat equation, weak formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521895 Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu
Authors: Sherif. S. Nafee, Ameer. K. Al-Ramady, Salem. A. Shaheen
Abstract:
The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.Keywords: Decay heat, fast neutron fission, and Numerical Solution of Linear Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911894 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve
Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin
Abstract:
Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.Keywords: Laminar forced convection, nanofluid, curve, return bend, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12851893 Farm Diversification and the Corresponding Policy for Its Implementation in Georgia
Authors: E. Kharaishvili
Abstract:
The paper shows the necessity of farm diversification in accordance with the current trends in agricultural sector of Georgia. The possibilities for the diversification and the corresponding economic policy are suggested. The causes that hinder diversification of farms are revealed, possibilities of diversification are identified and the ability of increasing employment through diversification is proved. Index of harvest diversification is calculated based on the areas used for cereals and legumes, potatoes and vegetables and other food crops. Crop and livestock production indexes are analyzed; correlation between crop capacity index and value added per worker and per hectare is studied. Based on the research farm diversification strategies and priorities of corresponding economic policy are presented. Based on the conclusions relevant recommendations are suggested.Keywords: Farm diversification, diversification index, agricultural development policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851892 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations
Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia
Abstract:
Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651891 Value Index, a Novel Decision Making Approach for Waste Load Allocation
Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271890 Studies on Various Parameters Involved in Conjugation of Starch with Lysine for Excellent Emulsification Properties Using Response Surface Methodology
Authors: Sourish Bhattacharya, Priyanka Singh
Abstract:
The process parameters, starch-water ratio (A, (w/v) %), pH of suspension (B), Temperature(C, °C) and Time (D, hrs.)., were optimized for the preparation of starch-lysine conjugate and studying their effect on stability of emulsions by calculating emulsion stability index using response surface methodology. The optimized conditions are pH 9.0, temperature 60oC, reaction time 6 hrs, starch:water ratio 1:2.5, having emulsion stability index was 0.72.
Keywords: Emulsion stability index, pH of suspension, Starch-water ratio, Temperature, Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501889 Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally
Authors: Mahdi Hamzehei
Abstract:
In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.Keywords: Gas-solid flows, fluidized bed, Hydrodynamics, Heat transfer, Turbulence model, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601888 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918