Search results for: Artificial Tip Perturbation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1015

Search results for: Artificial Tip Perturbation

625 Comparative Analysis of Machine Learning Tools: A Review

Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha

Abstract:

Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.

Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
624 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
623 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling

Authors: Adesoji T. Jaiyeola, Josiah Adeyemo

Abstract:

This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.

Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
622 Real-time Laser Monitoring based on Pipe Detective Operation

Authors: Mongkorn Klingajay, Tawatchai Jitson

Abstract:

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
621 Experimental and Theoretical Investigation of Rough Rice Drying in Infrared-assisted Hot Air Dryer Using Artificial Neural Network

Authors: D. Zare, H. Naderi, A. A. Jafari

Abstract:

Drying characteristics of rough rice (variety of lenjan) with an initial moisture content of 25% dry basis (db) was studied in a hot air dryer assisted by infrared heating. Three arrival air temperatures (30, 40 and 500C) and four infrared radiation intensities (0, 0.2 , 0.4 and 0.6 W/cm2) and three arrival air speeds (0.1, 0.15 and 0.2 m.s-1) were studied. Bending strength of brown rice kernel, percentage of cracked kernels and time of drying were measured and evaluated. The results showed that increasing the drying arrival air temperature and radiation intensity of infrared resulted decrease in drying time. High bending strength and low percentage of cracked kernel was obtained when paddy was dried by hot air assisted infrared dryer. Between this factors and their interactive effect were a significant difference (p<0.01). An intensity level of 0.2 W/cm2 was found to be optimum for radiation drying. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the moisture content during drying (output parameter for ANN modeling) was investigated. Infrared Radiation intensity, drying air temperature, arrival air speed and drying time were considered as input parameters for the model. An ANN model with two hidden layers with 8 and 14 neurons were selected for studying the influence of transfer functions and training algorithms. The results revealed that a network with the Tansig (hyperbolic tangent sigmoid) transfer function and trainlm (Levenberg-Marquardt) back propagation algorithm made the most accurate predictions for the paddy drying system. Mean square error (MSE) was calculated and found that the random errors were within and acceptable range of ±5% with coefficient of determination (R2) of 99%.

Keywords: Rough rice, Infrared-hot air, Artificial Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
620 Alternative Convergence Analysis for a Kind of Singularly Perturbed Boundary Value Problems

Authors: Jiming Yang

Abstract:

A kind of singularly perturbed boundary value problems is under consideration. In order to obtain its approximation, simple upwind difference discretization is applied. We use a moving mesh iterative algorithm based on equi-distributing of the arc-length function of the current computed piecewise linear solution. First, a maximum norm a posteriori error estimate on an arbitrary mesh is derived using a different method from the one carried out by Chen [Advances in Computational Mathematics, 24(1-4) (2006), 197-212.]. Then, basing on the properties of discrete Green-s function and the presented posteriori error estimate, we theoretically prove that the discrete solutions computed by the algorithm are first-order uniformly convergent with respect to the perturbation parameter ε.

Keywords: Convergence analysis, green's function, singularly perturbed, equi-distribution, moving mesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
619 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers

Authors: Alexandre Boum, Salomon Madinatou

Abstract:

This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.

Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
618 Video Super-Resolution Using Classification ANN

Authors: Ming-Hui Cheng, Jyh-Horng Jeng

Abstract:

In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.

Keywords: Super-resolution, classification, spatio-temporal information, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
617 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

Authors: K. Khelil, H. Ammar, K. Saouchi

Abstract:

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
616 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

Authors: O. Yavuz, L. Ozyilmaz

Abstract:

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
615 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
614 Simulation and Optimization of Mechanisms made of Micro-molded Components

Authors: Albert Albers, Pablo Enrique Leslabay

Abstract:

The Institute of Product Development is dealing with the development, design and dimensioning of micro components and systems as a member of the Collaborative Research Centre 499 “Design, Production and Quality Assurance of Molded micro components made of Metallic and Ceramic Materials". Because of technological restrictions in the miniaturization of conventional manufacturing techniques, shape and material deviations cannot be scaled down in the same proportion as the micro parts, rendering components with relatively wide tolerance fields. Systems that include such components should be designed with this particularity in mind, often requiring large clearance. On the end, the output of such systems results variable and prone to dynamical instability. To save production time and resources, every study of these effects should happen early in the product development process and base on computer simulation to avoid costly prototypes. A suitable method is proposed here and exemplary applied to a micro technology demonstrator developed by the CRC499. It consists of a one stage planetary gear train in a sun-planet-ring configuration, with input through the sun gear and output through the carrier. The simulation procedure relies on ordinary Multi Body Simulation methods and subsequently adds other techniques to further investigate details of the system-s behavior and to predict its response. The selection of the relevant parameters and output functions followed the engineering standards for regular sized gear trains. The first step is to quantify the variability and to reveal the most critical points of the system, performed through a whole-mechanism Sensitivity Analysis. Due to the lack of previous knowledge about the system-s behavior, different DOE methods involving small and large amount of experiments were selected to perform the SA. In this particular case the parameter space can be divided into two well defined groups, one of them containing the gear-s profile information and the other the components- spatial location. This has been exploited to explore the different DOE techniques more promptly. A reduced set of parameters is derived for further investigation and to feed the final optimization process, whether as optimization parameters or as external perturbation collective. The 10 most relevant perturbation factors and 4 to 6 prospective variable parameters are considered in a new, simplified model. All of the parameters are affected by the mentioned production variability. The objective functions of interest are based on scalar output-s variability measures, so the problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development path of a method to design and optimize complex micro mechanisms composed of wide tolerated elements accounting for the robustness and reliability of the systems- output.

Keywords: Micro molded components, Optimization, Robustness und Reliability, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
613 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
612 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4347
611 Basic Research for Distinguishing Small Retinal Hemorrhages from Dust Artifact by using Hue, Lightness, and Saturation Color Space

Authors: Naoto Suzuki

Abstract:

To distinguish small retinal hemorrhages in early diabetic retinopathy from dust artifacts, we analyzed hue, lightness, and saturation (HLS) color spaces. The fundus of 5 patients with diabetic retinopathy was photographed. For the initial experiment, we placed 4 different colored papers on the ceiling of a darkroom. Using each color, 10 fragments of house dust particles on a magnifier were photographed. The colored papers were removed, and 3 different colored light bulbs were suspended from the ceiling. Ten fragments of house dust particles on the camera-s object lens were photographed. We then constructed an experimental device that can photograph artificial eyes. Five fragments of house dust particles under the ocher fundus of the artificial eye were photographed. On analyzing HLS color space of the dust artifact, lightness and saturation were found to be highly sensitive. However, hue was not highly sensitive.

Keywords: Dust artifact, HLS color space, Retinal hemorrhage, and Diabetic retinopathy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
610 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent

Authors: Ali Ghiaseddin , Akram Nemati

Abstract:

In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.

Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
609 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method

Authors: S. Qaedi, S. Seyedtabaii

Abstract:

Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.

Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
608 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
607 Global Exponential Stability of Impulsive BAM Fuzzy Cellular Neural Networks with Time Delays in the Leakage Terms

Authors: Liping Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Global exponential stability, bidirectional associative memory, fuzzy cellular neural networks, leakage delays, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
606 Application of Artificial Neural Network to Classification Surface Water Quality

Authors: S. Wechmongkhonkon, N.Poomtong, S. Areerachakul

Abstract:

Water quality is a subject of ongoing concern. Deterioration of water quality has initiated serious management efforts in many countries. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (TColiform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of canals in Dusit district in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 96.52% in classifying the water quality of Dusit district canal in Bangkok Subsequently, this encouraging result could be applied with plan and management source of water quality.

Keywords: artificial neural network, classification, surface water quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3180
605 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening

Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu

Abstract:

Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups.  This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.

Keywords: Breast Cancer Screening, Radiology, Thermalytix, Artificial Intelligence, Thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
604 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: Artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
603 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: Decentralized, optimal control, output, singular perturb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
602 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains

Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi

Abstract:

Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.

Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
601 Intelligent Modeling of the Electrical Activity of the Human Heart

Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos

Abstract:

The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.

Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
600 Power System Voltage Control using LP and Artificial Neural Network

Authors: A. Sina, A. Aeenmehr, H. Mohamadian

Abstract:

Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.

Keywords: voltage control, linear programming, artificial neural network, power systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
599 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
598 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
597 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
596 A Wind Farm Reduced Order Model Using Integral Manifold Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Due to the increasing penetration of wind energy, it is necessary to possess design tools that are able to simulate the impact of these installations in utility grids. In order to provide a net contribution to this issue a detailed wind park model has been developed and is briefly presented. However, the computational costs associated with the performance of such a detailed model in describing the behavior of a wind park composed by a considerable number of units may render its practical application very difficult. To overcome this problem integral manifolds theory has been applied to reduce the order of the detailed wind park model, and therefore create the conditions for the development of a dynamic equivalent which is able to retain the relevant dynamics with respect to the existing a.c. system. In this paper integral manifold method has been introduced for order reduction. Simulation results of the proposed method represents that integral manifold method results fit the detailed model results with a higher precision than singular perturbation method.

Keywords: Wind, Reduced Order, Integral Manifold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487