Search results for: open data kit.
7693 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method
Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.
Abstract:
The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.
Keywords: Acoustic radiation, boundary element
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14757692 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets
Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi
Abstract:
In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.
Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15007691 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software
Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven
Abstract:
Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.
Keywords: Aeroacoustics, Ffowcs-Williams and Hawkings equations, SST k-ω turbulence model, Noise Disturbance, 3D Blade Profile, 2D Blade Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8607690 The New Method of Concealed Data Aggregation in Wireless Sensor: A Case Study
Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie
Abstract:
Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.
Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17687689 Peakwise Smoothing of Data Models using Wavelets
Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan
Abstract:
Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17507688 A New Precautionary Method for Measurement and Improvement the Data Quality
Authors: Seyed Mohammad Hossein Moossavizadeh, Mehran Mohsenzadeh, Nasrin Arshadi
Abstract:
the data quality is a kind of complex and unstructured concept, which is concerned by information systems managers. The reason of this attention is the high amount of Expenses for maintenance and cleaning of the inefficient data. Such a data more than its expenses of lack of quality, cause wrong statistics, analysis and decisions in organizations. Therefor the managers intend to improve the quality of their information systems' data. One of the basic subjects of quality improvement is the evaluation of the amount of it. In this paper, we present a precautionary method, which with its application the data of information systems would have a better quality. Our method would cover different dimensions of data quality; therefor it has necessary integrity. The presented method has tested on three dimensions of accuracy, value-added and believability and the results confirm the improvement and integrity of this method.
Keywords: Data quality, precaution, information system, measurement, improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14687687 An Efficient Data Mining Approach on Compressed Transactions
Authors: Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, Ming-Chuan Hung
Abstract:
In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.Keywords: Association rule, data mining, merged transaction, quantification table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19607686 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems
Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang
Abstract:
Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.Keywords: Wind resource assessment, Weather Research and Forecasting (WRF) Model, python, GIS software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23967685 Weigh-in-Motion Data Analysis Software for Developing Traffic Data for Mechanistic Empirical Pavement Design
Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder
Abstract:
Currently, there are few user friendly Weigh-in- Motion (WIM) data analysis softwares available which can produce traffic input data for the recently developed AASHTOWare pavement Mechanistic-Empirical (ME) design software. However, these softwares have only rudimentary Quality Control (QC) processes. Therefore, they cannot properly deal with erroneous WIM data. As the pavement performance is highly sensible to the quality of WIM data, it is highly recommended to use more refined QC process on raw WIM data to get a good result. This study develops a userfriendly software, which can produce traffic input for the ME design software. This software takes the raw data (Class and Weight data) collected from the WIM station and processes it with a sophisticated QC procedure. Traffic data such as traffic volume, traffic distribution, axle load spectra, etc. can be obtained from this software; which can directly be used in the ME design software.Keywords: Weigh-in-motion, software, axle load spectra, traffic distribution, AASHTOWare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18967684 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning
Authors: Dina Tareq Ismail, Alexandria A. Proff
Abstract:
The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.Keywords: ICT Skills, M-Learning, self-efficacy, teachermotivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4817683 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data
Authors: Sedigheh Mirzaei S., Debasis Sengupta
Abstract:
Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.Keywords: Preece-Baines growth model, MCMC method, Mixed effect model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21397682 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies
Authors: T. S. Myers, J. Trevathan
Abstract:
Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.
Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17157681 Data Migration between Document-Oriented and Relational Databases
Authors: Bogdan Walek, Cyril Klimes
Abstract:
Current tools for data migration between documentoriented and relational databases have several disadvantages. We propose a new approach for data migration between documentoriented and relational databases. During data migration the relational schema of the target (relational database) is automatically created from collection of XML documents. Proposed approach is verified on data migration between document-oriented database IBM Lotus/ Notes Domino and relational database implemented in relational database management system (RDBMS) MySQL.Keywords: data migration, database, document-oriented database, XML, relational schema
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35257680 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).
Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11207679 Power Saving System in Green Data Center
Authors: Joon-young Jung, Dong-oh Kang, Chang-seok Bae
Abstract:
Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.Keywords: Data Center, Green IT, Management Server, Power Saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16287678 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27047677 Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh
Authors: M. F. Miah, K. M. A. Zinnah, M. J. Raihan, H. Ali, M. N. Naser
Abstract:
As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, Monopterus cuchia at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively.
Keywords: Genetic diversity, Monopterus cuchia, population, RAPD, Bangladesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18317676 Principal Component Analysis using Singular Value Decomposition of Microarray Data
Authors: Dong Hoon Lim
Abstract:
A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. Principal component analysis(PCA) has been widely used in multivariate data analysis to reduce the dimensionality of the data in order to simplify subsequent analysis and allow for summarization of the data in a parsimonious manner. PCA, which can be implemented via a singular value decomposition(SVD), is useful for analysis of microarray data. For application of PCA using SVD we use the DNA microarray data for the small round blue cell tumors(SRBCT) of childhood by Khan et al.(2001). To decide the number of components which account for sufficient amount of information we draw scree plot. Biplot, a graphic display associated with PCA, reveals important features that exhibit relationship between variables and also the relationship of variables with observations.
Keywords: Principal component analysis, singular value decomposition, microarray data, SRBCT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32507675 Precious and Rare Metals in Overburden Carbonaceous Rocks: Methods of Extraction
Authors: Tatyana Alexandrova, Alexandr Alexandrov, Nadezhda Nikolaeva
Abstract:
A problem of complex mineral resources development is urgent and priority, it is aimed at realization of the processes of their ecologically safe development, one of its components is revealing the influence of the forms of element compounds in raw materials and in the processing products. In view of depletion of the precious metal reserves at the traditional deposits in the XXI century the large-size open cast deposits, localized in black shale strata begin to play the leading role. Carbonaceous (black) shales carry a heightened metallogenic potential. Black shales with high content of carbon are widely distributed within the scope of Bureinsky massif. According to academician Hanchuk`s data black shales of Sutirskaya series contain generally PGEs native form. The presence of high absorptive towards carbonaceous matter gold and PGEs compounds in crude ore results in decrease of valuable components extraction because of their sorption into dissipated carbonaceous matter.Keywords: Сarbonaceous rocks, bitumens, precious metals, concentration, extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16477674 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17807673 Speech Data Compression using Vector Quantization
Authors: H. B. Kekre, Tanuja K. Sarode
Abstract:
Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table shows computational complexity of these three algorithms. Here we have introduced a new performance parameter Average Fractional Change in Speech Sample (AFCSS). Our FCG algorithm gives far better performance considering mean absolute error, AFCSS and complexity as compared to others.Keywords: Vector Quantization, Data Compression, Encoding, , Speech coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24037672 Ontology and CDSS Based Intelligent Health Data Management in Health Care Server
Authors: Eun-Jung Ko, Hyung-Jik Lee, Jeun-Woo Lee
Abstract:
In ubiqutious healthcare environment, user's health data are transfered to the remote healthcare server by the user's wearable system or mobile phone. These collected user's health data should be managed and analyzed in the healthcare server, so that care giver or user can monitor user's physiological state. In this paper, we designed and developed the intelligent Healthcare Server to manage the user's health data using CDSS and ontology. Our system can analyze user's health data semantically using CDSS and ontology, and report the result of user's physiological raw data to the user and care giver.
Keywords: u-healthcare, CDSS, healthcare server, health data, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22357671 A Genetic Algorithm for Clustering on Image Data
Authors: Qin Ding, Jim Gasvoda
Abstract:
Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.
Keywords: Clustering, data mining, genetic algorithm, image data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20527670 A Holistic Framework for Unifying Data Security and Management in Modern Enterprises
Authors: Ashly Joseph
Abstract:
Modern businesses struggle significantly to secure and manage their data properly as the volume and complexity of their data both expand exponentially. Through the use of a multi-layered defense strategy, a centralized management platform, and cutting-edge technologies like AI, this research paper presents a comprehensive framework to integrate data security and management. The constraints of current data protection and management strategies, technological advancements, and the evolving threat landscape are all examined in this article. It suggests best practices for putting into practice integrated data security and governance models, placing an emphasis on ongoing adaptation. The advantages mentioned include a strengthened security posture, simpler procedures, lower costs, and reduced complexity. Additionally, issues including skill shortages, antiquated systems, and cultural obstacles are examined. Security executives and Chief Information Security Officers are given practical advice on how to evaluate, plan, and put into place strong data-centric security and management capabilities. The goal of the paper is to provide a thorough study of the data security and management landscape and to arm contemporary businesses with the knowledge they need to be proactive in protecting their data assets.
Keywords: Data security, security management, cloud computing, cybersecurity, data governance, security architecture, data management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687669 Post Mining- Discovering Valid Rules from Different Sized Data Sources
Authors: R. Nedunchezhian, K. Anbumani
Abstract:
A big organization may have multiple branches spread across different locations. Processing of data from these branches becomes a huge task when innumerable transactions take place. Also, branches may be reluctant to forward their data for centralized processing but are ready to pass their association rules. Local mining may also generate a large amount of rules. Further, it is not practically possible for all local data sources to be of the same size. A model is proposed for discovering valid rules from different sized data sources where the valid rules are high weighted rules. These rules can be obtained from the high frequency rules generated from each of the data sources. A data source selection procedure is considered in order to efficiently synthesize rules. Support Equalization is another method proposed which focuses on eliminating low frequency rules at the local sites itself thus reducing the rules by a significant amount.
Keywords: Association rules, multiple data stores, synthesizing, valid rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14047668 RFID-ready Master Data Management for Reverse Logistics
Authors: Jincheol Han, Hyunsun Ju, Jonghoon Chun
Abstract:
Sharing consistent and correct master data among disparate applications in a reverse-logistics chain has long been recognized as an intricate problem. Although a master data management (MDM) system can surely assume that responsibility, applications that need to co-operate with it must comply with proprietary query interfaces provided by the specific MDM system. In this paper, we present a RFID-ready MDM system which makes master data readily available for any participating applications in a reverse-logistics chain. We propose a RFID-wrapper as a part of our MDM. It acts as a gateway between any data retrieval request and query interfaces that process it. With the RFID-wrapper, any participating applications in a reverse-logistics chain can easily retrieve master data in a way that is analogous to retrieval of any other RFID-based logistics transactional data.Keywords: Reverse Logistics, Master Data Management, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19747667 PeliGRIFF: A Parallel DEM-DLM/FD Method for DNS of Particulate Flows with Collisions
Authors: Anthony Wachs, Guillaume Vinay, Gilles Ferrer, Jacques Kouakou, Calin Dan, Laurence Girolami
Abstract:
An original Direct Numerical Simulation (DNS) method to tackle the problem of particulate flows at moderate to high concentration and finite Reynolds number is presented. Our method is built on the framework established by Glowinski and his coworkers [1] in the sense that we use their Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) formulation and their operator-splitting idea but differs in the treatment of particle collisions. The novelty of our contribution relies on replacing the simple artificial repulsive force based collision model usually employed in the literature by an efficient Discrete Element Method (DEM) granular solver. The use of our DEM solver enables us to consider particles of arbitrary shape (at least convex) and to account for actual contacts, in the sense that particles actually touch each other, in contrast with the simple repulsive force based collision model. We recently upgraded our serial code, GRIFF 1 [2], to full MPI capabilities. Our new code, PeliGRIFF 2, is developed under the framework of the full MPI open source platform PELICANS [3]. The new MPI capabilities of PeliGRIFF open new perspectives in the study of particulate flows and significantly increase the number of particles that can be considered in a full DNS approach: O(100000) in 2D and O(10000) in 3D. Results on the 2D/3D sedimentation/fluidization of isometric polygonal/polyedral particles with collisions are presented.
Keywords: Particulate flow, distributed lagrange multiplier/fictitious domain method, discrete element method, polygonal shape, sedimentation, distributed computing, MPI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21247666 Dynamic Models versus Frailty Models for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent event data is a special type of multivariate survival data. Dynamic and frailty models are one of the approaches that dealt with this kind of data. A comparison between these two models is studied using the empirical standard deviation of the standardized martingale residual processes as a way of assessing the fit of the two models based on the Aalen additive regression model. Here we found both approaches took heterogeneity into account and produce residual standard deviations close to each other both in the simulation study and in the real data set.Keywords: Dynamic, frailty, misspecification, recurrent events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23507665 Issues and Architecture for Supporting Data Warehouse Queries in Web Portals
Authors: Minsoo Lee, Yoon-kyung Lee, Hyejung Yoon, Soo-kyung Song, Sujeong Cheong
Abstract:
Data Warehousing tools have become very popular and currently many of them have moved to Web-based user interfaces to make it easier to access and use the tools. The next step is to enable these tools to be used within a portal framework. The portal framework consists of pages having several small windows that contain individual data warehouse query results. There are several issues that need to be considered when designing the architecture for a portal enabled data warehouse query tool. Some issues need special techniques that can overcome the limitations that are imposed by the nature of data warehouse queries. Issues such as single sign-on, query result caching and sharing, customization, scheduling and authorization need to be considered. This paper discusses such issues and suggests an architecture to support data warehouse queries within Web portal frameworks.
Keywords: Data Warehousing tools, data warehousing queries, web portal frameworks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21217664 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935