Search results for: decision making
1703 Optimal Measures in Production Developing an Universal Decision Supporter for Evaluating Measures in a Production
Authors: Michael Grigutsch, Marco Kennemann, Peter Nyhuis
Abstract:
Due to the recovering global economy, enterprises are increasingly focusing on logistics. Investing in logistic measures for a production generates a large potential for achieving a good starting point within a competitive field. Unlike during the global economic crisis, enterprises are now challenged with investing available capital to maximize profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need an adequate model for logistically and monetarily evaluating measures in production. The Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems (IFA) developed a Logistic Information System which provides support in making decisions and is designed specifically for the forging industry. The aim of a project that has been applied for is to now transfer this process in order to develop a universal approach to logistically and monetarily evaluate measures in production.Keywords: Measures in Production, Logistic Operating Curves, Transfer Functions, Production Logistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911702 Data Envelopment Analysis under Uncertainty and Risk
Authors: P. Beraldi, M. E. Bruni
Abstract:
Data Envelopment Analysis (DEA) is one of the most widely used technique for evaluating the relative efficiency of a set of homogeneous decision making units. Traditionally, it assumes that input and output variables are known in advance, ignoring the critical issue of data uncertainty. In this paper, we deal with the problem of efficiency evaluation under uncertain conditions by adopting the general framework of the stochastic programming. We assume that output parameters are represented by discretely distributed random variables and we propose two different models defined according to a neutral and risk-averse perspective. The models have been validated by considering a real case study concerning the evaluation of the technical efficiency of a sample of individual firms operating in the Italian leather manufacturing industry. Our findings show the validity of the proposed approach as ex-ante evaluation technique by providing the decision maker with useful insights depending on his risk aversion degree.Keywords: DEA, Stochastic Programming, Ex-ante evaluation technique, Conditional Value at Risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701701 Determining of Stage-Discharge Relationship for Meandering Compound Channels Using M5 Decision Tree Model
Authors: Mehdi Kheradmand, Mehdi Azhdary Moghaddam, Abdolreza Zahiri, Khalil Ghorbani
Abstract:
In modeling phenomena, the presence of local conditions may cause the use of a general relation not to produce good results and thus fail to demonstrate local changes. If possible, identifying homogenous limits and providing simple linear relations for each of these limits will increase the accuracy of models. Accordingly, the models are divided into simpler and smaller problems to solve complicated problems, and the obtained answers will be combined. This simple idea can be applied to decision tree models. For this aim, the input data values are divided into several sub-intervals or sub-regions, and an appropriate model is extracted for an appropriate model or equation. This research proposes the M5 decision tree method as a solution to accurately compute the flow discharge in meandering compound channels.
Keywords: Stage-discharge relationship, decision tree, M5 decision tree model, meandering compound channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481700 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.
Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431699 Towards Improved Public Information on Industrial Emissions in Italy: Concepts and Specific Issues Associated to the Italian Experience in IPPC Permit Licensing
Authors: Mazziotti Gomez de Teran C., Fiore D., Cola B., Fardelli A.
Abstract:
The present paper summarizes the analysis of the request for consultation of information and data on industrial emissions made publicly available on the web site of the Ministry of Environment, Land and Sea on integrated pollution prevention and control from large industrial installations, the so called “AIA Portal”. As a matter of fact, a huge amount of information on national industrial plants is already available on internet, although it is usually proposed as textual documentation or images. Thus, it is not possible to access all the relevant information through interoperability systems and also to retrieval relevant information for decision making purposes as well as rising of awareness on environmental issue. Moreover, since in Italy the number of institutional and private subjects involved in the management of the public information on industrial emissions is substantial, the access to the information is provided on internet web sites according to different criteria; thus, at present it is not structurally homogeneous and comparable. To overcome the mentioned difficulties in the case of the Coordinating Committee for the implementation of the Agreement for the industrial area in Taranto and Statte, operating before the IPPC permit granting procedures of the relevant installation located in the area, a big effort was devoted to elaborate and to validate data and information on characterization of soil, ground water aquifer and coastal sea at disposal of different subjects to derive a global perspective for decision making purposes. Thus, the present paper also focuses on main outcomes matured during such experience.
Keywords: Public information, emissions into atmosphere, IPPC permits, territorial information systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20581698 The Use of Recommender Systems in Decision Support–A Case Study on Used Car Dealers
Authors: Nalinee Sophatsathit
Abstract:
This research focuses on the use of a recommender system in decision support by means of a used car dealer case study in Bangkok Metropolitan. The goal is to develop an effective used car purchasing system for dealers based on the above premise. The underlying principle rests on content-based recommendation from a set of usability surveys. A prototype was developed to conduct buyers- survey selected from 5 experts and 95 general public. The responses were analyzed to determine the mean and standard deviation of buyers- preference. The results revealed that both groups were in favor of using the proposed system to assist their buying decision. This indicates that the proposed system is meritorious to used car dealers.Keywords: Recommender Systems, Decision Support, Content- Based Recommendation, used car dealer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741697 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.
Keywords: Additive manufacturing, decision-makings, environmental impact, predictive models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10651696 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process
Authors: S. Ghorbani, N. I. Polushin
Abstract:
The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.
Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9561695 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management
Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal
Abstract:
Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.Keywords: Sustainable supply chain management, supplier selection, MCDM tools, AHP analysis, TOPSIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34901694 Stakeholder Analysis: Who are the Key Actorsin Establishing and Developing Thai Independent Consumer Organizations?
Authors: P. Ondee, S. Pannarunothai
Abstract:
In Thailand, both the 1997 and the current 2007 Thai Constitutions have mentioned the establishment of independent organizations as a new mechanism to play a key role in proposing policy recommendations to national decision-makers in the interest of collective consumers. Over the last ten years, no independent organizations have yet been set up. Evidently, nobody could point out who should be key players in establishing provincial independent consumer bodies. The purpose of this study was to find definitive stakeholders in establishing and developing independent consumer bodies in a Thai context. This was a cross-sectional study between August and September 2007, using a postal questionnaire with telephone follow-up. The questionnaire was designed and used to obtain multiple stakeholder assessment of three key attributes (power, interest and influence). Study population was 153 stakeholders associated with policy decision-making, formulation and implementation processes of civil-based consumer protection in pilot provinces. The population covered key representatives from five sectors (academics, government officers, business traders, mass media and consumer networks) who participated in the deliberative forums at 10 provinces. A 49.7% response rate was achieved. Data were analyzed, comparing means of three stakeholder attributes and classification of stakeholder typology. The results showed that the provincial health officers were the definitive stakeholders as they had legal power, influence and interest in establishing and sustaining the independent consumer bodies. However, only a few key representatives of the provincial health officers expressed their own paradigm on the civil-based consumer protection. Most provincial health officers put their own standpoint of building civic participation at only a plan-implementation level. For effective policy implementation by the independent consumer bodies, the Thai government should provide budgetary support for the operation of the provincial health officers with their paradigm shift as well as their own clarified standpoint on corporate governance.
Keywords: Civic participation, civil society, consumerprotection, independent organization, policy decision-making, stakeholder analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19451693 K-best Night Vision Devices by Multi-Criteria Mixed-Integer Optimization Modeling
Authors: Daniela I. Borissova, Ivan C. Mustakerov
Abstract:
The paper describes an approach for defining of k-best night vision devices based on multi-criteria mixed-integer optimization modeling. The parameters of night vision devices are considered as criteria that have to be optimized. Using different user preferences for the relative importance between parameters different choice of k-best devices can be defined. An ideal device with all of its parameters at their optimum is used to determine how far the particular device from the ideal one is. A procedure for evaluation of deviation between ideal solution and k-best solutions is presented. The applicability of the proposed approach is numerically illustrated using real night vision devices data. The proposed approach contributes to quality of decisions about choice of night vision devices by making the decision making process more certain, rational and efficient.
Keywords: K-best devices, mixed-integer model, multi-criteria problem, night vision devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051692 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach
Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee
Abstract:
The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.
Keywords: Participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14851691 Intelligent Path Planning for Rescue Robot
Authors: Sohrab Khanmohammadi, Raana Soltani Zarrin
Abstract:
In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.Keywords: Artificial potential field, GERT, path planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18451690 Mining Educational Data to Support Students’ Major Selection
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.
Keywords: Data mining technique, the decision support system, knowledge and decision rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32851689 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting and tracking of physical items in combination with Internet of Things (IoT) developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm decision-making process does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyze on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue and environmental impact. Evolutionary Computing (EC) can be very effective in finding the optimal combination of sets of some objects and finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and EC in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management and its uptake has become a continuing trend.
Keywords: Big data, evolutionary computing, cloud, precision technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7631688 e Collaborative Decisions – a DSS for Academic Environment
Authors: C. Oprean, C. V. Kifor, S. C. Negulescu, C. Candea, L. Oprean, C. Oprean, S. Kifor
Abstract:
This paper presents an innovative approach within the area of Group Decision Support System (GDSS) by using tools based on intelligent agents. It introduces iGDSS, a software platform for decision support and collaboration and an application of this platform - eCollaborative Decisions - for academic environment, all these developed within a framework of a research project.
Keywords: Group Decision Support System, Managerial Academic Decisions, Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941687 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971686 Decision Maturity Framework: Introducing Maturity In Heuristic Search
Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes
Abstract:
Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13561685 Decision Tree for Competing Risks Survival Probability in Breast Cancer Study
Authors: N. A. Ibrahim, A. Kudus, I. Daud, M. R. Abu Bakar
Abstract:
Competing risks survival data that comprises of more than one type of event has been used in many applications, and one of these is in clinical study (e.g. in breast cancer study). The decision tree method can be extended to competing risks survival data by modifying the split function so as to accommodate two or more risks which might be dependent on each other. Recently, researchers have constructed some decision trees for recurrent survival time data using frailty and marginal modelling. We further extended the method for the case of competing risks. In this paper, we developed the decision tree method for competing risks survival time data based on proportional hazards for subdistribution of competing risks. In particular, we grow a tree by using deviance statistic. The application of breast cancer data is presented. Finally, to investigate the performance of the proposed method, simulation studies on identification of true group of observations were executed.Keywords: Competing risks, Decision tree, Simulation, Subdistribution Proportional Hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741684 Clinical Benefits of an Embedded Decision Support System in Anticoagulant Control
Authors: Tony Austin, Shanghua Sun, Nathan Lea, Steve Iliffe, Dipak Kalra, David Ingram, David Patterson
Abstract:
Computer-based decision support (CDSS) systems can deliver real patient care and increase chances of long-term survival in areas of chronic disease management prone to poor control. One such CDSS, for the management of warfarin, is described in this paper and the outcomes shown. Data is derived from the running system and show a performance consistently around 20% better than the applicable guidelines.Keywords: "Decision Support", "Anticoagulant Control"
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871683 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.
Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10571682 Design and Analysis of Gauge R&R Studies: Making Decisions Based on ANOVA Method
Authors: Afrooz Moatari Kazerouni
Abstract:
In a competitive production environment, critical decision making are based on data resulted by random sampling of product units. Efficiency of these decisions depends on data quality and also their reliability scale. This point leads to the necessity of a reliable measurement system. Therefore, the conjecture process and analysing the errors contributes to a measurement system known as Measurement System Analysis (MSA). The aim of this research is on determining the necessity and assurance of extensive development in analysing measurement systems, particularly with the use of Repeatability and Reproducibility Gages (GR&R) to improve physical measurements. Nowadays in productive industries, repeatability and reproducibility gages released so well but they are not applicable as well as other measurement system analysis methods. To get familiar with this method and gain a feedback in improving measurement systems, this survey would be on “ANOVA" method as the most widespread way of calculating Repeatability and Reproducibility (R&R).Keywords: Analysis of Variance (ANOVA), MeasurementSystem Analysis (MSA), Part-Operator interaction effect, Repeatability and Reproducibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46701681 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32311680 Civic E-Participation in Central and Eastern Europe: A Comparative Analysis
Authors: Izabela Kapsa
Abstract:
Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.
Keywords: Central and Eastern Europe, e-participation, e-government, post-communism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9451679 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.
Keywords: Stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001678 An Application of the Data Mining Methods with Decision Rule
Authors: Xun Ge, Jianhua Gong
Abstract:
ankings for output of Chinese main agricultural commodity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008 have been released in United Nations FAO Database. Unfortunately, where the ranking of output of Chinese cotton lint in the world for 2008 was missed. This paper uses sequential data mining methods with decision rules filling this gap. This new data mining method will be help to give a further improvement for United Nations FAO Database.
Keywords: Ranking, output of the main agricultural commodity, gross domestic product, decision table, information system, data mining, decision rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111677 Further Investigations on Higher Mathematics Scores for Chinese University Students
Authors: Xun Ge
Abstract:
Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.
Keywords: Rough set, support, strength, certainty factor, coverage factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701676 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process
Authors: Amer M. Momani, Abdulaziz A. Ahmed
Abstract:
The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31401675 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17711674 Ecosystem Model for Environmental Applications
Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru
Abstract:
This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision –making.
Keywords: Ecosystem model, Environmental security, Fuzzy logic, Sustainability of habitable regions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982