Search results for: data sequence reordering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7828

Search results for: data sequence reordering

7468 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
7467 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
7466 Performance Analysis of Selective Adaptive Multiple Access Interference Cancellation for Multicarrier DS-CDMA Systems

Authors: Maged Ahmed, Ahmed El-Mahdy

Abstract:

In this paper, Selective Adaptive Parallel Interference Cancellation (SA-PIC) technique is presented for Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) scheme. The motivation of using SA-PIC is that it gives high performance and at the same time, reduces the computational complexity required to perform interference cancellation. An upper bound expression of the bit error rate (BER) for the SA-PIC under Rayleigh fading channel condition is derived. Moreover, the implementation complexities for SA-PIC and Adaptive Parallel Interference Cancellation (APIC) are discussed and compared. The performance of SA-PIC is investigated analytically and validated via computer simulations.

Keywords: Adaptive interference cancellation, communicationsystems, multicarrier signal processing, spread spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
7465 Identifying Critical Success Factors for Data Quality Management through a Delphi Study

Authors: Maria Paula Santos, Ana Lucas

Abstract:

Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.

Keywords: Critical success factors, data quality, data quality management, Delphi, Q-Sort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
7464 Secure Data Aggregation Using Clusters in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.

Keywords: Aggregation, Clustering, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
7463 A New Protocol for Concealed Data Aggregation in Wireless Sensor Networks

Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie

Abstract:

Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.

Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
7462 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets

Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi

Abstract:

In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.

Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
7461 The New Method of Concealed Data Aggregation in Wireless Sensor: A Case Study

Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie

Abstract:

Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.

Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
7460 Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic Boundary Value Problem −Δu = f(u)

Authors: Abida Harbi

Abstract:

We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic boundary value problem of the form -Δu = f(u), on two overlapping sub domains with non matching grids. We consider a domain which is the union of two overlapping sub domains where each sub domain has its own independently generated grid. The two meshes being mutually independent on the overlap region, a triangle belonging to one triangulation does not necessarily belong to the other one. Under a Lipschitz assumption on the nonlinearity, we establish, on each sub domain, an optimal L∞ error estimate between the discrete Schwarz sequence and the exact solution of the boundary value problem.

Keywords: Error estimates, Finite elements, Nonlinear PDEs, Schwarz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
7459 Peakwise Smoothing of Data Models using Wavelets

Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan

Abstract:

Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.

Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
7458 A New Precautionary Method for Measurement and Improvement the Data Quality

Authors: Seyed Mohammad Hossein Moossavizadeh, Mehran Mohsenzadeh, Nasrin Arshadi

Abstract:

the data quality is a kind of complex and unstructured concept, which is concerned by information systems managers. The reason of this attention is the high amount of Expenses for maintenance and cleaning of the inefficient data. Such a data more than its expenses of lack of quality, cause wrong statistics, analysis and decisions in organizations. Therefor the managers intend to improve the quality of their information systems' data. One of the basic subjects of quality improvement is the evaluation of the amount of it. In this paper, we present a precautionary method, which with its application the data of information systems would have a better quality. Our method would cover different dimensions of data quality; therefor it has necessary integrity. The presented method has tested on three dimensions of accuracy, value-added and believability and the results confirm the improvement and integrity of this method.

Keywords: Data quality, precaution, information system, measurement, improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
7457 An Efficient Data Mining Approach on Compressed Transactions

Authors: Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, Ming-Chuan Hung

Abstract:

In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.

Keywords: Association rule, data mining, merged transaction, quantification table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
7456 A Note on Penalized Power-Divergence Test Statistics

Authors: Aylin Alin

Abstract:

In this paper, penalized power-divergence test statistics have been defined and their exact size properties to test a nested sequence of log-linear models have been compared with ordinary power-divergence test statistics for various penalization, λ and main effect values. Since the ordinary and penalized power-divergence test statistics have the same asymptotic distribution, comparisons have been only made for small and moderate samples. Three-way contingency tables distributed according to a multinomial distribution have been considered. Simulation results reveal that penalized power-divergence test statistics perform much better than their ordinary counterparts.

Keywords: Contingency table, Log-linear models, Penalization, Power-divergence measure, Penalized power-divergence measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
7455 Motor Skill Adaptation Depends On the Level of Learning

Authors: Herbert Ugrinowitsch, Suziane Peixoto dos Santos-Naves, Michele Viviene Carbinatto, Rodolfo NovellinoBenda, Go Tani

Abstract:

An experiment was conducted to examine the effect of the level of performance stabilization on the human adaptability to perceptual-motor perturbation in a complex coincident timing task. Three levels of performance stabilization were established operationally: pre-stabilization, stabilization, and super-stabilization groups. Each group practiced the task until reached its level of stabilization in a constant sequence of movements and under a constant time constraint before exposure to perturbation. The results clearly showed that performance stabilization is a pre-condition for adaptation. Moreover, variability before reaching stabilization is harmful to adaptation and persistent variability after stabilization is beneficial. Moreover, the behavior of variability is specific to each measure.

Keywords: Adaptation, motor skill, perturbation, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
7454 Weigh-in-Motion Data Analysis Software for Developing Traffic Data for Mechanistic Empirical Pavement Design

Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder

Abstract:

Currently, there are few user friendly Weigh-in- Motion (WIM) data analysis softwares available which can produce traffic input data for the recently developed AASHTOWare pavement Mechanistic-Empirical (ME) design software. However, these softwares have only rudimentary Quality Control (QC) processes. Therefore, they cannot properly deal with erroneous WIM data. As the pavement performance is highly sensible to the quality of WIM data, it is highly recommended to use more refined QC process on raw WIM data to get a good result. This study develops a userfriendly software, which can produce traffic input for the ME design software. This software takes the raw data (Class and Weight data) collected from the WIM station and processes it with a sophisticated QC procedure. Traffic data such as traffic volume, traffic distribution, axle load spectra, etc. can be obtained from this software; which can directly be used in the ME design software.

Keywords: Weigh-in-motion, software, axle load spectra, traffic distribution, AASHTOWare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
7453 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data

Authors: Sedigheh Mirzaei S., Debasis Sengupta

Abstract:

Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.

Keywords: Preece-Baines growth model, MCMC method, Mixed effect model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
7452 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies

Authors: T. S. Myers, J. Trevathan

Abstract:

Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.

Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
7451 Visual Object Tracking in 3D with Color Based Particle Filter

Authors: Pablo Barrera, Jose M. Canas, Vicente Matellan

Abstract:

This paper addresses the problem of determining the current 3D location of a moving object and robustly tracking it from a sequence of camera images. The approach presented here uses a particle filter and does not perform any explicit triangulation. Only the color of the object to be tracked is required, but not any precisemotion model. The observation model we have developed avoids the color filtering of the entire image. That and the Monte Carlotechniques inside the particle filter provide real time performance.Experiments with two real cameras are presented and lessons learned are commented. The approach scales easily to more than two cameras and new sensor cues.

Keywords: Monte Carlo sampling, multiple view, particle filters, visual tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
7450 Data Migration between Document-Oriented and Relational Databases

Authors: Bogdan Walek, Cyril Klimes

Abstract:

Current tools for data migration between documentoriented and relational databases have several disadvantages. We propose a new approach for data migration between documentoriented and relational databases. During data migration the relational schema of the target (relational database) is automatically created from collection of XML documents. Proposed approach is verified on data migration between document-oriented database IBM Lotus/ Notes Domino and relational database implemented in relational database management system (RDBMS) MySQL.

Keywords: data migration, database, document-oriented database, XML, relational schema

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
7449 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
7448 Structure Based Computational Analysis and Molecular Phylogeny of C- Phycocyanin Gene from the Selected Cyanobacteria

Authors: N. Reehana, A. Parveez Ahamed, D. Mubarak Ali, A. Suresh, R. Arvind Kumar, N. Thajuddin

Abstract:

Cyanobacteria play a vital role in the production of phycobiliproteins that includes phycocyanin and phycoerythrin pigments. Phycocyanin and related phycobiliproteins have wide variety of application that is used in the food, biotechnology and cosmetic industry because of their color, fluorescent and antioxidant properties. The present study is focused to understand the pigment at molecular level in the Cyanobacteria Oscillatoria terebriformis NTRI05 and Oscillatoria foreaui NTRI06. After extraction of genomic DNA, the amplification of C-Phycocyanin gene was done with the suitable primer PCβF and PCαR and the sequencing was performed. Structural and Phylogenetic analysis was attained using the sequence to develop a molecular model.

Keywords: Cyanobacteria, C-Phycocyanin gene, Phylogenetic analysis, Structural analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060
7447 A Search Algorithm for Solving the Economic Lot Scheduling Problem with Reworks under the Basic Period Approach

Authors: Yu-Jen Chang, Shih-Chieh Chen, Yu-Wei Kuo

Abstract:

In this study, we are interested in the economic lot scheduling problem (ELSP) that considers manufacturing of the serviceable products and remanufacturing of the reworked products. In this paper, we formulate a mathematical model for the ELSP with reworks using the basic period approach. In order to solve this problem, we propose a search algorithm to find the cyclic multiplier ki of each product that can be cyclically produced for every ki basic periods. This research also uses two heuristics to search for the optimal production sequence of all lots and the optimal time length of the basic period so as to minimize the average total cost. This research uses a numerical example to show the effectiveness of our approach.

Keywords: Economic lot, reworks, inventory, basic period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
7446 Power Saving System in Green Data Center

Authors: Joon-young Jung, Dong-oh Kang, Chang-seok Bae

Abstract:

Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.

Keywords: Data Center, Green IT, Management Server, Power Saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
7445 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
7444 Presenting a Combinatorial Feature to Estimate Depth of Anesthesia

Authors: Toktam Zoughi, Reza Boostani

Abstract:

Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.

Keywords: Depth of anesthesia, EEG, BIS, Wavelet transforms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
7443 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces

Authors: Paula Verdugo-Hernández, Patricio Cumsille

Abstract:

We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of Mathematical Working Spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.

Keywords: Convergence, graphical representations, Mathematical Working Spaces, paradigms of real analysis, real number sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
7442 Object Tracking System Using Camshift, Meanshift and Kalman Filter

Authors: Afef Salhi, Ameni Yengui Jammaoussi

Abstract:

This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.

Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8250
7441 A High Quality Factor Filter Based on Quasi-Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue- Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
7440 MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management

Authors: M. Awawdeh, A. Fedi

Abstract:

The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.

Keywords: Data Mining, Environmental data, Mathematical Models, Matlab Graphical User Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4741
7439 Motion Detection Techniques Using Optical Flow

Authors: A. A. Shafie, Fadhlan Hafiz, M. H. Ali

Abstract:

Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.

Keywords: Background modeling, Motion detection, Optical flow, Velocity smoothness constant, motion trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5384