Search results for: continuous time domain estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8359

Search results for: continuous time domain estimation

7999 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.

Keywords: Estimation, integer frequency offset, OFDM, timing offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
7998 Periodic Solutions for a Two-prey One-predator System on Time Scales

Authors: Changjin Xu

Abstract:

In this paper, using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales, the existence of periodic solutions for a two-prey one-predator system is studied. Some sufficient conditions for the existence of positive periodic solutions are obtained. The results provide unified existence theorems of periodic solution for the continuous differential equations and discrete difference equations.

Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
7997 Watermark Bit Rate in Diverse Signal Domains

Authors: Nedeljko Cvejic, Tapio Sepp

Abstract:

A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

Keywords: Digital watermarking, information hiding, audio watermarking, watermark data rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
7996 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

Authors: Sambit Prasad Kar, P.Palanisamy

Abstract:

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
7995 Interference Reduction Technique in Multistage Multiuser Detector for DS-CDMA System

Authors: Lokesh Tharani, R.P.Yadav

Abstract:

This paper presents the results related to the interference reduction technique in multistage multiuser detector for asynchronous DS-CDMA system. To meet the real-time requirements for asynchronous multiuser detection, a bit streaming, cascade architecture is used. An asynchronous multiuser detection involves block-based computations and matrix inversions. The paper covers iterative-based suboptimal schemes that have been studied to decrease the computational complexity, eliminate the need for matrix inversions, decreases the execution time, reduces the memory requirements and uses joint estimation and detection process that gives better performance than the independent parameter estimation method. The stages of the iteration use cascaded and bits processed in a streaming fashion. The simulation has been carried out for asynchronous DS-CDMA system by varying one parameter, i.e., number of users. The simulation result exhibits that system gives optimum bit error rate (BER) at 3rd stage for 15-users.

Keywords: Multi-user detection (MUD), multiple accessinterference (MAI), near-far effect, decision feedback detector, successive interference cancellation detector (SIC) and parallelinterference cancellation (PIC) detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
7994 A Linear Use Case Based Software Cost Estimation Model

Authors: Hasan.O. Farahneh, Ayman A. Issa

Abstract:

Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.

Keywords: Metrics, Software Cost Estimation, Use Cases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
7993 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
7992 Probability of Globality

Authors: Eva Eggeling, Dieter W. Fellner, Torsten Ullrich

Abstract:

The objective of global optimization is to find the globally best solution of a model. Nonlinear models are ubiquitous in many applications and their solution often requires a global search approach; i.e. for a function f from a set A ⊂ Rn to the real numbers, an element x0 ∈ A is sought-after, such that ∀ x ∈ A : f(x0) ≤ f(x). Depending on the field of application, the question whether a found solution x0 is not only a local minimum but a global one is very important. This article presents a probabilistic approach to determine the probability of a solution being a global minimum. The approach is independent of the used global search method and only requires a limited, convex parameter domain A as well as a Lipschitz continuous function f whose Lipschitz constant is not needed to be known.

Keywords: global optimization, probability theory, probability of globality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
7991 Domain-based Key Management Scheme for Active Network

Authors: Jong-Whoi Shin, Soon-Tai Park, Chong-Sun Hwang

Abstract:

Active network was developed to solve the problem of the current sharing-based network–difficulty in applying new technology, service or standard, and duplicated operation at several protocol layers. Active network can transport the packet loaded with the executable codes, which enables to change the state of the network node. However, if the network node is placed in the sharing-based network, security and safety issues should be resolved. To satisfy this requirement, various security aspects are required such as authentication, authorization, confidentiality and integrity. Among these security components, the core factor is the encryption key. As a result, this study is designed to propose the scheme that manages the encryption key, which is used to provide security of the comprehensive active directory, based on the domain.

Keywords: Active Network, Domain-based Key Management, Security Components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
7990 Estimation of Missing or Incomplete Data in Road Performance Measurement Systems

Authors: Kristjan Kuhi, Kati K. Kaare, Ott Koppel

Abstract:

Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.

Keywords: Probabilistic graphical models, performance indicators, road performance management, data collection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
7989 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi

Abstract:

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.

Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
7988 Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement

Authors: Raid A. Al-Aomar

Abstract:

This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.

Keywords: 5S Technique, Continuous Improvement, Kaizen, Lean Technology, Work Methods, Work Standards

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4908
7987 Feature Vector Fusion for Image Based Human Age Estimation

Authors: D. Karthikeyan, G. Balakrishnan

Abstract:

Human faces, as important visual signals, express a significant amount of nonverbal info for usage in human-to-human communication. Age, specifically, is more significant among these properties. Human age estimation using facial image analysis as an automated method which has numerous potential real‐world applications. In this paper, an automated age estimation framework is presented. Support Vector Regression (SVR) strategy is utilized to investigate age prediction. This paper depicts a feature extraction taking into account Gray Level Co-occurrence Matrix (GLCM), which can be utilized for robust face recognition framework. It applies GLCM operation to remove the face's features images and Active Appearance Models (AAMs) to assess the human age based on image. A fused feature technique and SVR with GA optimization are proposed to lessen the error in age estimation.

Keywords: Support vector regression, feature extraction, gray level co-occurrence matrix, active appearance models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
7986 Vehicle Velocity Estimation for Traffic Surveillance System

Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain

Abstract:

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Keywords: camera calibration, object tracking, velocity estimation, video image processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4457
7985 Ontology Population via NLP Techniques in Risk Management

Authors: Jawad Makki, Anne-Marie Alquier, Violaine Prince

Abstract:

In this paper we propose an NLP-based method for Ontology Population from texts and apply it to semi automatic instantiate a Generic Knowledge Base (Generic Domain Ontology) in the risk management domain. The approach is semi-automatic and uses a domain expert intervention for validation. The proposed approach relies on a set of Instances Recognition Rules based on syntactic structures, and on the predicative power of verbs in the instantiation process. It is not domain dependent since it heavily relies on linguistic knowledge. A description of an experiment performed on a part of the ontology of the PRIMA1 project (supported by the European community) is given. A first validation of the method is done by populating this ontology with Chemical Fact Sheets from Environmental Protection Agency2. The results of this experiment complete the paper and support the hypothesis that relying on the predicative power of verbs in the instantiation process improves the performance.

Keywords: Information Extraction, Instance Recognition Rules, Ontology Population, Risk Management, Semantic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
7984 Weakly Generalized Closed Map

Authors: R. Parimelazhagan, N. Nagaveni

Abstract:

In this paper we introduce a new class of mg-continuous mapping and studied some of its basic properties.We obtain some characterizations of such functions. Moreover we define sub minimal structure and further study certain properties of mg-closed sets.

Keywords: M-structure, mg-continuous mapping, minimal structure, mg T2 space, sub minimal structure, T12 space, mg-compact set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
7983 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: Activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
7982 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain

Authors: Changjin Xu

Abstract:

In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Predator-prey model, stability, Hopf bifurcation, frequency domain, Nyquist criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
7981 End-to-End Pyramid Based Method for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337
7980 A novel Iterative Approach for Phase Noise Cancellation in Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems

Authors: Joumana Farah, François Marx, Clovis Francis

Abstract:

The aim of this paper is to emphasize and alleviate the effect of phase noise due to imperfect local oscillators on the performances of a Multi-Carrier CDMA system. After the cancellation of Common Phase Error (CPE), an iterative approach is introduced which iteratively estimates Inter-Carrier Interference (ICI) components in the frequency domain and cancels their contribution in the time domain. Simulation are conducted in order to investigate the achievable performances for several parameters, such as the spreading factor, the modulation order, the phase noise power and the transmission Signal-to-Noise Ratio.

Keywords: Inter-carrier Interference, Multi-Carrier Code DivisionMultiple Access, Orthogonal Frequency Division Multiplexing, Phase noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
7979 Dynamic Voltage Stability Estimation using Particle Filter

Authors: Osea Zebua, Norikazu Ikoma, Hiroshi Maeda

Abstract:

Estimation of voltage stability based on optimal filtering method is presented. PV curve is used as a tool for voltage stability analysis. Dynamic voltage stability estimation is done by using particle filter method. Optimum value (nose point) of PV curve can be estimated by estimating parameter of PV curve equation optimal value represents critical voltage and condition at specified point of measurement. Voltage stability is then estimated by analyzing loading margin condition c stimating equation. This maximum loading ecified dynamically.

Keywords: normalized PV curve, optimal filtering method particle filter, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
7978 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255
7977 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System

Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa

Abstract:

In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.

Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
7976 An investigation on the Effect of Continuous Phase Height on the First and Second Critical Rotor Speeds in a Rotary Disc Contactor

Authors: Hoda Molavi, Sima Hoseinpoor, Hossein Bahmanyar

Abstract:

A Rotary Disc Contactor with inner diameter of 9.1cm and maximum operating height of 40cm has been used to investigate break up phenomenon. Water-Toluene, Water as continuous phase and Toluene as dispersed phase, was selected as chemical system in the experiments. The mentioned chemical system has high interfacial tension so it was possible to form big drops which permit accurate investigation on break up phenomenon as well as the first and second critical rotor speeds. In this study, Break up phenomenon has been studied as a function of mother drop size, rotor speed and continuous phase height. Further more; the effects of mother drop size and continuous phase height on the first and second critical rotor speeds were investigated. Finally, two modified correlations were proposed to estimate the first and second critical speeds.

Keywords: Breakage, First critical rotor speed, Rotary disccontactor, Second critical rotor speed

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
7975 A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface

Authors: D. Kim

Abstract:

Numerical simulations are performed for laminar continuous and pulsed jets impinging on a surface in order to investigate the effects of pulsing frequency on the heat transfer characteristics. The time-averaged Nusselt number of pulsed jets is larger in the impinging jet region as compared to the continuous jet, while it is smaller in the outer wall jet region. At the stagnation point, the mean and RMS Nusselt numbers become larger and smaller, respectively, as the pulsing frequency increases. Unsteady behaviors of vortical fluid motions and temperature field are also investigated to understand the underlying mechanisms of heat transfer enhancement.

Keywords: Pulsed slot jet, impingement, pulsing frequency, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
7974 Model Order Reduction of Discrete-Time Systems Using Fuzzy C-Means Clustering

Authors: Anirudha Narain, Dinesh Chandra, Ravindra K. S.

Abstract:

A computationally simple approach of model order reduction for single input single output (SISO) and linear timeinvariant discrete systems modeled in frequency domain is proposed in this paper. Denominator of the reduced order model is determined using fuzzy C-means clustering while the numerator parameters are found by matching time moments and Markov parameters of high order system.

Keywords: Model Order reduction, Discrete-time system, Fuzzy C-Means Clustering, Padé approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
7973 Improving Quality of Business Networks for Information Systems

Authors: Hazem M. El-Bakry, Ahmed Atwan

Abstract:

Computer networks are essential part in computerbased information systems. The performance of these networks has a great influence on the whole information system. Measuring the usability criteria and customers satisfaction on small computer network is very important. In this article, an effective approach for measuring the usability of business network in an information system is introduced. The usability process for networking provides us with a flexible and a cost-effective way to assess the usability of a network and its products. In addition, the proposed approach can be used to certify network product usability late in the development cycle. Furthermore, it can be used to help in developing usable interfaces very early in the cycle and to give a way to measure, track, and improve usability. Moreover, a new approach for fast information processing over computer networks is presented. The entire data are collected together in a long vector and then tested as a one input pattern. Proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Usability Criteria, Computer Networks, Fast Information Processing, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
7972 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software

Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura

Abstract:

This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈

Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
7971 Adaptive WiFi Fingerprinting for Location Approximation

Authors: Mohd Fikri Azli bin Abdullah, Khairul Anwar bin Kamarul Hatta, Esther Jeganathan

Abstract:

WiFi has become an essential technology that is widely used nowadays. It is famous due to its convenience to be used with mobile devices. This is especially true for Internet users worldwide that use WiFi connections. There are many location based services that are available nowadays which uses Wireless Fidelity (WiFi) signal fingerprinting. A common example that is gaining popularity in this era would be Foursquare. In this work, the WiFi signal would be used to estimate the user or client’s location. Similar to GPS, fingerprinting method needs a floor plan to increase the accuracy of location estimation. Still, the factor of inconsistent WiFi signal makes the estimation defer at different time intervals. Given so, an adaptive method is needed to obtain the most accurate signal at all times. WiFi signals are heavily distorted by external factors such as physical objects, radio frequency interference, electrical interference, and environmental factors to name a few. Due to these factors, this work uses a method of reducing the signal noise and estimation using the Nearest Neighbour based on past activities of the signal to increase the signal accuracy up to more than 80%. The repository yet increases the accuracy by using Artificial Neural Network (ANN) pattern matching. The repository acts as the server cum support of the client side application decision. Numerous previous works has adapted the methods of collecting signal strengths in the repository over the years, but mostly were just static. In this work, proposed solutions on how the adaptive method is done to match the signal received to the data in the repository are highlighted. With the said approach, location estimation can be done more accurately. Adaptive update allows the latest location fingerprint to be stored in the repository. Furthermore, any redundant location fingerprints are removed and only the updated version of the fingerprint is stored in the repository. How the location estimation of the user can be predicted would be highlighted more in the proposed solution section. After some studies on previous works, it is found that the Artificial Neural Network is the most feasible method to deploy in updating the repository and making it adaptive. The Artificial Neural Network functions are to do the pattern matching of the WiFi signal to the existing data available in the repository.

Keywords: Adaptive Repository, Artificial Neural Network, Location Estimation, Nearest Neighbour Euclidean Distance, WiFi RSSI Fingerprinting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3460
7970 Adaptive Extended Kalman Filter for Ballistic Missile Tracking

Authors: Gaurav Kumar, Dharmbir Prasad, Rudra Pratap Singh

Abstract:

In the current work, adaptive extended Kalman filter (AEKF) is presented for solution of ground radar based ballistic missile (BM) tracking problem in re-entry phase with unknown ballistic coefficient. The estimation of trajectory of any BM in re-entry phase is extremely difficult, because of highly non-linear motion of BM. The estimation accuracy of AEKF has been tested for a typical test target tracking problem adopted from literature. Further, the approach of AEKF is compared with extended Kalman filter (EKF). The simulation result indicates the superiority of the AEKF in solving joint parameter and state estimation problems.

Keywords: Adaptive, AEKF, ballistic missile, EKF, re-entry phase, target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666