Search results for: classification problem
4139 Optimized Facial Features-based Age Classification
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park
Abstract:
The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20474138 Genetic Programming Based Data Projections for Classification Tasks
Authors: César Estébanez, Ricardo Aler, José M. Valls
Abstract:
In this paper we present a GP-based method for automatically evolve projections, so that data can be more easily classified in the projected spaces. At the same time, our approach can reduce dimensionality by constructing more relevant attributes. Fitness of each projection measures how easy is to classify the dataset after applying the projection. This is quickly computed by a Simple Linear Perceptron. We have tested our approach in three domains. The experiments show that it obtains good results, compared to other Machine Learning approaches, while reducing dimensionality in many cases.
Keywords: Classification, genetic programming, projections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13984137 Multiple Mental Thought Parametric Classification: A New Approach for Individual Identification
Authors: Ramaswamy Palaniappan
Abstract:
This paper reports a new approach on identifying the individuality of persons by using parametric classification of multiple mental thoughts. In the approach, electroencephalogram (EEG) signals were recorded when the subjects were thinking of one or more (up to five) mental thoughts. Autoregressive features were computed from these EEG signals and classified by Linear Discriminant classifier. The results here indicate that near perfect identification of 400 test EEG patterns from four subjects was possible, thereby opening up a new avenue in biometrics.Keywords: Autoregressive, Biometrics, Electroencephalogram, Linear discrimination, Mental thoughts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13984136 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3214135 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image processing, real-time recognition, weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21634134 Modeling Language for Constructing Solvers in Machine Learning: Reductionist Perspectives
Authors: Tsuyoshi Okita
Abstract:
For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.
Keywords: Formal language, statistical inference problem, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13284133 Analysis of Heuristic Based Hybrid Simulated Annealing Algorithm for Multiprocessor Task Scheduling
Authors: Supriya Arya, Sunita Dhingra
Abstract:
Multiprocessor task scheduling problem for dependent and independent tasks is computationally complex problem. Many methods are proposed to achieve optimal running time. As the multiprocessor task scheduling is NP hard in nature, therefore, many heuristics are proposed which have improved the makespan of the problem. But due to problem specific nature, the heuristic method which provide best results for one problem, might not provide good results for another problem. So, Simulated Annealing which is meta heuristic approach is considered. It can be applied on all types of problems. However, due to many runs, meta heuristic approach takes large computation time. Hence, the hybrid approach is proposed by combining the Duplication Scheduling Heuristic and Simulated Annealing (SA) and the makespan results of Simple Simulated Annealing and Hybrid approach are analyzed.
Keywords: Multiprocessor task scheduling Problem, Makespan, Duplication Scheduling Heuristic, Simulated Annealing, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22264132 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7284131 An Algorithm for an Optimal Staffing Problem in Open Shop Environment
Authors: Daniela I. Borissova, Ivan C. Mustakerov
Abstract:
The paper addresses a problem of optimal staffing in open shop environment. The problem is to determine the optimal number of operators serving a given number of machines to fulfill the number of independent operations while minimizing staff idle. Using a Gantt chart presentation of the problem it is modeled as twodimensional cutting stock problem. A mixed-integer programming model is used to get minimal job processing time (makespan) for fixed number of machines' operators. An algorithm for optimal openshop staffing is developed based on iterative solving of the formulated optimization task. The execution of the developed algorithm provides optimal number of machines' operators in the sense of minimum staff idle and optimal makespan for that number of operators. The proposed algorithm is tested numerically for a real life staffing problem. The testing results show the practical applicability for similar open shop staffing problems.Keywords: Integer programming, open shop problem, optimal staffing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33194130 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7084129 An ensemble of Weighted Support Vector Machines for Ordinal Regression
Authors: Willem Waegeman, Luc Boullart
Abstract:
Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.Keywords: Ordinal regression, support vector machines, ensemblelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16424128 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.
Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9994127 An Evaluation of Algorithms for Single-Echo Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers' performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.
Keywords: Classification, neuro-spike coding, non-parametricmodel, parametric model, Gaussian mixture, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16694126 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape
Authors: M. Vogiatzis, K. Perakis
Abstract:
Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.
Keywords: land use/land cover, random forest, Landsat-8 OLI, Sentinel-2A MSI, Corine land cover
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394125 The Influence of Preprocessing Parameters on Text Categorization
Authors: Jan Pomikalek, Radim Rehurek
Abstract:
Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.
Keywords: Text categorization, machine learning, electronic documents, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15744124 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.
Keywords: Carbonate reservoirs, microporosity, overview of porosity classification, reservoir characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10044123 Memetic Algorithm Based Path Planning for a Mobile Robot
Authors: Neda Shahidi, Hadi Esmaeilzadeh, Marziye Abdollahi, Caro Lucas
Abstract:
In this paper, the problem of finding the optimal collision free path for a mobile robot, the path planning problem, is solved using an advanced evolutionary algorithm called memetic algorithm. What is new in this work is a novel representation of solutions for evolutionary algorithms that is efficient, simple and also compatible with memetic algorithm. The new representation makes it possible to solve the problem with a small population and in a few generations. It also makes the genetic operator simple and allows using an efficient local search operator within the evolutionary algorithm. The proposed algorithm is applied to two instances of path planning problem and the results are available.
Keywords: Path planning problem, Memetic Algorithm, Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17404122 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnels projects in which there is a number of tunnels and different professional teams involved. In this regard, a comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, an applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate and so forth can be calculated and reported in a standard format.
Keywords: Engineering geology, rock mass classification, rock mechanic, tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224121 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22274120 Searching the Efficient Frontier for the Coherent Covering Location Problem
Authors: Felipe Azocar Simonet, Luis Acosta Espejo
Abstract:
In this article, we will try to find an efficient boundary approximation for the bi-objective location problem with coherent coverage for two levels of hierarchy (CCLP). We present the mathematical formulation of the model used. Supported efficient solutions and unsupported efficient solutions are obtained by solving the bi-objective combinatorial problem through the weights method using a Lagrangean heuristic. Subsequently, the results are validated through the DEA analysis with the GEM index (Global efficiency measurement).Keywords: Coherent covering location problem, efficient frontier, Lagrangian relaxation, data envelopment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8094119 A Monte Carlo Method to Data Stream Analysis
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham
Abstract:
Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14174118 Classification of Radio Communication Signals using Fuzzy Logic
Authors: Zuzana Dideková, Beata Mikovičová
Abstract:
Characterization of radio communication signals aims at automatic recognition of different characteristics of radio signals in order to detect their modulation type, the central frequency, and the level. Our purpose is to apply techniques used in image processing in order to extract pertinent characteristics. To the single analysis, we add several rules for checking the consistency of hypotheses using fuzzy logic. This allows taking into account ambiguity and uncertainty that may remain after the extraction of individual characteristics. The aim is to improve the process of radio communications characterization.Keywords: fuzzy classification, fuzzy inference system, radio communication signals, telecommunications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19714117 A Multimodal Approach for Biometric Authentication with Multiple Classifiers
Authors: Sorin Soviany, Cristina Soviany, Mariana Jurian
Abstract:
The paper presents a multimodal approach for biometric authentication, based on multiple classifiers. The proposed solution uses a post-classification biometric fusion method in which the biometric data classifiers outputs are combined in order to improve the overall biometric system performance by decreasing the classification error rates. The paper shows also the biometric recognition task improvement by means of a carefully feature selection, as much as not all of the feature vectors components support the accuracy improvement.
Keywords: biometric fusion, multiple classifiers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20834116 A New Algorithm for Determining the Leading Coefficient of in the Parabolic Equation
Authors: Shiping Zhou, Minggen Cui
Abstract:
This paper investigates the inverse problem of determining the unknown time-dependent leading coefficient in the parabolic equation using the usual conditions of the direct problem and an additional condition. An algorithm is developed for solving numerically the inverse problem using the technique of space decomposition in a reproducing kernel space. The leading coefficients can be solved by a lower triangular linear system. Numerical experiments are presented to show the efficiency of the proposed methods.Keywords: parabolic equations, coefficient inverse problem, reproducing kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15814115 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.
Keywords: Bus scheduling problem, decision support system, genetic algorithm, operation planning, shortest path, transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15324114 Massive Lesions Classification using Features based on Morphological Lesion Differences
Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo
Abstract:
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13824113 TRS: System for Recommending Semantic Web Service Composition Approaches
Authors: Sandeep Kumar, R. B. Mishra
Abstract:
A large number of semantic web service composition approaches are developed by the research community and one is more efficient than the other one depending on the particular situation of use. So a close look at the requirements of ones particular situation is necessary to find a suitable approach to use. In this paper, we present a Technique Recommendation System (TRS) which using a classification of state-of-art semantic web service composition approaches, can provide the user of the system with the recommendations regarding the use of service composition approach based on some parameters regarding situation of use. TRS has modular architecture and uses the production-rules for knowledge representation.Keywords: Classification, composition techniques, recommendation system, rule-based, semantic web service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13784112 SEM Image Classification Using CNN Architectures
Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.
Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984111 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm
Authors: Omid S. Fard, Akbar H. Borzabadi
Abstract:
In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12934110 Timetabling Communities’ Demands for an Effective Examination Timetabling Using Integer Linear Programming
Authors: N. F. Jamaluddin, N. A. H. Aizam
Abstract:
This paper explains the educational timetabling problem, a type of scheduling problem that is considered as one of the most challenging problem in optimization and operational research. The university examination timetabling problem (UETP), which involves assigning a set number of exams into a set number of timeslots whilst fulfilling all required conditions, has been widely investigated. The limitation of available timeslots and resources with the increasing number of examinations are the main reasons in the difficulty of solving this problem. Dynamical change in the examination scheduling system adds up the complication particularly in coping up with the demand and new requirements by the communities. Our objective is to investigate these demands and requirements with subjects taken from Universiti Malaysia Terengganu (UMT), through questionnaires. Integer linear programming model which reflects the preferences obtained to produce an effective examination timetabling was formed.
Keywords: Demands, educational timetabling, integer linear programming, scheduling, university examination timetabling problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010