Search results for: Interval features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1813

Search results for: Interval features

1453 Teager-Huang Analysis Applied to Sonar Target Recognition

Authors: J.-C. Cexus, A.O. Boudraa

Abstract:

In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.

Keywords: Target recognition, Empirical mode decomposition, Teager-Kaiser energy operator, Features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
1452 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: Facial expression identification, curvelet coefficients, support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1451 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
1450 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

Keywords: Power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
1449 Injunctions, Disjunctions, Remnants: The Reverse of Unity

Authors: Igor Guatelli

Abstract:

The universe of aesthetic perception entails impasses about sensitive divergences that each text or visual object may be subjected to. If approached through intertextuality that is not based on the misleading notion of kinships or similarities a priori admissible, the possibility of anachronistic, heterogeneous - and non-diachronic - assemblies can enhance the emergence of interval movements, intermediate, and conflicting, conducive to a method of reading, interpreting, and assigning meaning that escapes the rigid antinomies of the mere being and non-being of things. In negative, they operate in a relationship built by the lack of an adjusted meaning set by their positive existences, with no remainders; the generated interval becomes the remnant of each of them; it is the opening that obscures the stable positions of each one. Without the negative of absence, of that which is always missing or must be missing in a text, concept, or image made positive by history, nothing is perceived beyond what has been already given. Pairings or binary oppositions cannot lead only to functional syntheses; on the contrary, methodological disturbances accumulated by the approximation of signs and entities can initiate a process of becoming as an opening to an unforeseen other, transformation until a moment when the difficulties of [re]conciliation become the mainstay of a future of that sign/entity, not envisioned a priori. A counter-history can emerge from these unprecedented, misadjusted approaches, beginnings of unassigned injunctions and disjunctions, in short, difficult alliances that open cracks in a supposedly cohesive history, chained in its apparent linearity with no remains, understood as a categorical historical imperative. Interstices are minority fields that, because of their opening, are capable of causing opacity in that which, apparently, presents itself with irreducible clarity. Resulting from an incomplete and maladjusted [at the least dual] marriage between the signs/entities that originate them, this interval may destabilize and cause disorder in these entities and their own meanings. The interstitials offer a hyphenated relationship: a simultaneous union and separation, a spacing between the entity’s identity and its otherness or, alterity. One and the other may no longer be seen without the crack or fissure that now separates them, uniting, by a space-time lapse. Ontological, semantic shifts are caused by this fissure, an absence between one and the other, one with and against the other. Based on an improbable approximation between some conceptual and semantic shifts within the design production of architect Rem Koolhaas and the textual production of the philosopher Jacques Derrida, this article questions the notion of unity, coherence, affinity, and complementarity in the process of construction of thought from these ontological, epistemological, and semiological fissures that rattle the signs/entities and their stable meanings. Fissures in a thought that is considered coherent, cohesive, formatted are the negativity that constitutes the interstices that allow us to move towards what still remains as non-identity, which allows us to begin another story.

Keywords: Clearing, interstice, negative, remnant, spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
1448 Bio-Inspired Generalized Global Shape Approach for Writer Identification

Authors: Azah Kamilah Muda, Siti Mariyam Shamsuddin, Maslina Darus

Abstract:

Writer identification is one of the areas in pattern recognition that attract many researchers to work in, particularly in forensic and biometric application, where the writing style can be used as biometric features for authenticating an identity. The challenging task in writer identification is the extraction of unique features, in which the individualistic of such handwriting styles can be adopted into bio-inspired generalized global shape for writer identification. In this paper, the feasibility of generalized global shape concept of complimentary binding in Artificial Immune System (AIS) for writer identification is explored. An experiment based on the proposed framework has been conducted to proof the validity and feasibility of the proposed approach for off-line writer identification.

Keywords: Writer identification, generalized global shape, individualistic, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
1447 The Effect of Multiple Environmental Conditions on Acacia Senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdoelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence, it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven-day-old seedlings were assigned to the treatments in split-plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sandy soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C% and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Sahara, Sudan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
1446 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
1445 Quantitative Genetics Researches on Milk Protein Systems of Romanian Grey Steppe Breed

Authors: V. Maciuc, Şt. Creangă, I. Gîlcă, V. Ujică

Abstract:

The paper makes part from a complex research project on Romanian Grey Steppe, a unique breed in terms of biological and cultural-historical importance, on the verge of extinction and which has been included in a preservation programme of genetic resources from Romania. The study of genetic polymorphism of protean fractions, especially kappa-casein, and the genotype relations of these lactoproteins with some quantitative and qualitative features of milk yield represents a current theme and a novelty for this breed. In the estimation of the genetic parameters we used R.E.M.L. (Restricted Maximum Likelihood) method. The main lactoprotein from milk, kappa - casein (K-cz), characterized in the specialized literature as a feature having a high degree of hereditary transmission, behaves as such in the nucleus under study, a value also confirmed by the heritability coefficient (h2 = 0.57 %). We must mention the medium values for milk and fat quantity (h2=0.26, 0.29 %) and the fat and protein percentage from milk having a high hereditary influence h2 = 0.71 - 0.63 %. Correlations between kappa-casein and the milk quantity are negative and strong. Between kappa-casein and other qualitative features of milk (fat content 0.58-0.67 % and protein content 0.77- 0.87%), there are positive and very strong correlations. At the same time, between kappa-casein and β casein (β-cz), β lactoglobulin (β- lg) respectively, correlations are positive having high values (0.37 – 0.45 %), indicating the same causes and determining factors for the two groups of features.

Keywords: breed, genetic preservation, lactoproteins, Romanian Grey Steppe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1444 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
1443 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders

Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf

Abstract:

The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.

Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
1442 Performance Prediction of Multi-Agent Based Simulation Applications on the Grid

Authors: Dawit Mengistu, Lars Lundberg, Paul Davidsson

Abstract:

A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.

Keywords: Grid computing, Performance modeling, Performance prediction, Multi-agent simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1441 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation

Authors: Maassoumeh Bemani Naeini

Abstract:

Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases.  Results describe the existence of task variation in the interlanguage system of Persian L2 learners.

Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
1440 Secure Image Retrieval Based On Orthogonal Decomposition under Cloud Environment

Authors: Yanyan Xu, Lizhi Xiong, Zhengquan Xu, Li Jiang

Abstract:

In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.

Keywords: Secure image retrieval, secure search, orthogonal decomposition, secure cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
1439 Spurious Crests in Second-Order Waves

Authors: M. A. Tayfun

Abstract:

Occurrences of spurious crests on the troughs of large, relatively steep second-order Stokes waves are anomalous and not an inherent characteristic of real waves. Here, the effects of such occurrences on the statistics described by the standard second-order stochastic model are examined theoretically and by way of simulations. Theoretical results and simulations indicate that when spurious occurrences are sufficiently large, the standard model leads to physically unrealistic surface features and inaccuracies in the statistics of various surface features, in particular, the troughs and thus zero-crossing heights of large waves. Whereas inaccuracies can be fairly noticeable for long-crested waves in both deep and shallower depths, they tend to become relatively insignificant in directional waves.

Keywords: Large waves, non-linear effects, simulation, spectra, spurious crests, Stokes waves, wave breaking, wave statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
1438 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs, since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e. exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype, in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, implementation features and properties of the prototype are discussed.

Keywords: Crowdsourcing, social media, SDG, climate change, natural disasters, gender equality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1437 Resolving Dependency Ambiguity of Subordinate Clauses using Support Vector Machines

Authors: Sang-Soo Kim, Seong-Bae Park, Sang-Jo Lee

Abstract:

In this paper, we propose a method of resolving dependency ambiguities of Korean subordinate clauses based on Support Vector Machines (SVMs). Dependency analysis of clauses is well known to be one of the most difficult tasks in parsing sentences, especially in Korean. In order to solve this problem, we assume that the dependency relation of Korean subordinate clauses is the dependency relation among verb phrase, verb and endings in the clauses. As a result, this problem is represented as a binary classification task. In order to apply SVMs to this problem, we selected two kinds of features: static and dynamic features. The experimental results on STEP2000 corpus show that our system achieves the accuracy of 73.5%.

Keywords: Dependency analysis, subordinate clauses, binaryclassification, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1436 Fuzzy Estimation of Parameters in Statistical Models

Authors: A. Falsafain, S. M. Taheri, M. Mashinchi

Abstract:

Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.

Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
1435 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 320
1434 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
1433 An Improved Fast Search Method Using Histogram Features for DNA Sequence Database

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose an efficient hierarchical DNA sequence search method to improve the search speed while the accuracy is being kept constant. For a given query DNA sequence, firstly, a fast local search method using histogram features is used as a filtering mechanism before scanning the sequences in the database. An overlapping processing is newly added to improve the robustness of the algorithm. A large number of DNA sequences with low similarity will be excluded for latter searching. The Smith-Waterman algorithm is then applied to each remainder sequences. Experimental results using GenBank sequence data show the proposed method combining histogram information and Smith-Waterman algorithm is more efficient for DNA sequence search.

Keywords: Fast search, DNA sequence, Histogram feature, Smith-Waterman algorithm, Local search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
1432 Dynamic Features Selection for Heart Disease Classification

Authors: Walid MOUDANI

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
1431 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results

Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1430 Describing Learning Features of Reusable Resources: A Proposal

Authors: Serena Alvino, Paola Forcheri, Maria Grazia Ierardi, Luigi Sarti

Abstract:

One of the main advantages of the LO paradigm is to allow the availability of good quality, shareable learning material through the Web. The effectiveness of the retrieval process requires a formal description of the resources (metadata) that closely fits the user-s search criteria; in spite of the huge international efforts in this field, educational metadata schemata often fail to fulfil this requirement. This work aims to improve the situation, by the definition of a metadata model capturing specific didactic features of shareable learning resources. It classifies LOs into “teacher-oriented" and “student-oriented" categories, in order to describe the role a LO is to play when it is integrated into the educational process. This article describes the model and a first experimental validation process that has been carried out in a controlled environment.

Keywords: Learning object, pedagogical metadata, experimental validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
1429 Support Vector Machine for Persian Font Recognition

Authors: A. Borji, M. Hamidi

Abstract:

In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefaces

Keywords: Persian font recognition, support vector machine, gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
1428 Effect of the Workpiece Position on the Manufacturing Tolerances

Authors: M. Rahou, F. Sebaa, A. Cheikh

Abstract:

Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach has been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval.

Keywords: Dispersion, tolerance, manufacturing, position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
1427 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1426 Lagrangian Method for Solving Unsteady Gas Equation

Authors: Amir Taghavi, kourosh Parand, Hosein Fani

Abstract:

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

Keywords: Unsteady gas equation, Generalized Laguerre functions, Lagrangian method, Nonlinear ODE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
1425 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin

Authors: Vilém Pařil, Dominika Tóthová

Abstract:

This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared, within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches; to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality; and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.

Keywords: Cultural heritage, environmental economics, existence value, value theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1424 Leadership in Future Operational Environment

Authors: M. Şimşek

Abstract:

Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained. 

Keywords: Future operational environment, leadership, leadership components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144