Search results for: Hybrid genetic algorithm
3826 Genetic-based Anomaly Detection in Logs of Process Aware Systems
Authors: Hanieh Jalali, Ahmad Baraani
Abstract:
Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.Keywords: Anomaly Detection, Genetic Algorithm, ProcessAware Systems, Process Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19253825 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA
Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani
Abstract:
In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14123824 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input
Authors: Toshinori Nawata, Hitoshi Takata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14413823 Robustness of Hybrid Learning Acceleration Feedback Control Scheme in Flexible Manipulators
Authors: M. Z Md Zain, M. O. Tokhi, M. S. Alam
Abstract:
This paper describes a practical approach to design and develop a hybrid learning with acceleration feedback control (HLC) scheme for input tracking and end-point vibration suppression of flexible manipulator systems. Initially, a collocated proportionalderivative (PD) control scheme using hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a further hybrid control scheme of the collocated PD control and iterative learning control with acceleration feedback using genetic algorithms (GAs) to optimize the learning parameters. Experimental results of the response of the manipulator with the control schemes are presented in the time and frequency domains. The performance of the HLC is assessed in terms of input tracking, level of vibration reduction at resonance modes and robustness with various payloads.Keywords: Flexible manipulator, iterative learning control, vibration suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18203822 Genetic-Based Multi Resolution Noisy Color Image Segmentation
Authors: Raghad Jawad Ahmed
Abstract:
Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15763821 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion
Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida
Abstract:
This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22603820 Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications
Authors: Uma Thanganathan
Abstract:
The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.
Keywords: PEMFC, Hybrid membrane, FTIR, TGA, Phosphomolybdic acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25973819 Finding Sparse Features in Face Detection Using Genetic Algorithms
Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani
Abstract:
Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.Keywords: Face Detection, Genetic Algorithms, Sparse Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15813818 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.Keywords: FSO, RF, hybrid, AF, DF, SER, SNR, GG channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10643817 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.
Keywords: Multi objective optimization, Pareto front, composite patch, cracked pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9103816 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16483815 Fractal Dimension: An Index to Quantify Parameters in Genetic Algorithms
Authors: Mahmoud R. Shaghaghian
Abstract:
Genetic Algorithms (GAs) are direct searching methods which require little information from design space. This characteristic beside robustness of these algorithms makes them to be very popular in recent decades. On the other hand, while this method is employed, there is no guarantee to achieve optimum results. This obliged designer to run such algorithms more than one time to achieve more reliable results. There are many attempts to modify the algorithms to make them more efficient. In this paper, by application of fractal dimension (particularly, Box Counting Method), the complexity of design space are established for determination of mutation and crossover probabilities (Pm and Pc). This methodology is followed by a numerical example for more clarification. It is concluded that this modification will improve efficiency of GAs and make them to bring about more reliable results especially for design space with higher fractal dimensions.Keywords: Genetic Algorithm, Fractal Dimension, BoxCounting Method, Weierstrass-Mandelbrot function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14673814 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar Harsh Climate
Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue
Abstract:
Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.Keywords: Atmospheric turbulence, haze, soft switching, Raptor codes, refractive index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25783813 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.
Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11043812 RAPD Analysis of the Genetic Polymorphism in the Collection of Rye Cultivars
Authors: L. Petrovičová, Ž. Balážová, Z. Gálová, M. Wójcik-Jagła, M. Rapacz
Abstract:
In the present study, RAPD-PCR was used to assess genetic diversity of the rye including landrances and new rye cultivars coming from Central Europe and the Union of Soviet Socialist Republics (SUN). Five arbitrary random primers were used to determine RAPD polymorphism in the set of 38 rye genotypes. These primers amplified altogether 43 different DNA fragments with an average number of 8.6 fragments per genotypes. The number of fragments ranged from 7 (RLZ 8, RLZ 9 and RLZ 10) to 12 (RLZ 6). DI and PIC values of all RAPD markers were higher than 0.8 that generally means high level of polymorphism detected between rye genotypes. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared. The cultivars were grouped into two main clusters. In this experiment, RAPD proved to be a rapid, reliable and practicable method for revealing of polymorphism in the rye cultivars.
Keywords: Genetic diversity, polymorphism, RAPD markers, Secalecereale L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26513811 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17443810 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
Authors: Sayyed R Mousavi
Abstract:
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.
Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17433809 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10783808 Topology Optimization of Cable Truss Web for Prestressed Suspension Bridge
Authors: Vadims Goremikins, Karlis Rocens, Dmitrijs Serdjuks
Abstract:
A suspension bridge is the most suitable type of structure for a long-span bridge due to rational use of structural materials. Increased deformability, which is conditioned by appearance of the elastic and kinematic displacements, is the major disadvantage of suspension bridges. The problem of increased kinematic displacements under the action of non-symmetrical load can be solved by prestressing. The prestressed suspension bridge with the span of 200 m was considered as an object of investigations. The cable truss with the cross web was considered as the main load carrying structure of the prestressed suspension bridge. The considered cable truss was optimized by 47 variable factors using Genetic algorithm and FEM program ANSYS. It was stated, that the maximum total displacements are reduced up to 29.9% by using of the cable truss with the rational characteristics instead of the single cable in the case of the worst situated load.
Keywords: Decreasing displacements, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26973807 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23363806 Batch-Oriented Setting Time Optimisation in an Aerodynamic Feeding System
Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis
Abstract:
The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. This system has been enabled to adjust itself by using a genetic algorithm. The longer this genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.Keywords: Aerodynamic feeding system, batch size, optimisation, setting time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14533805 Efficient Scheduling Algorithm for QoS Support in High Speed Downlink Packet Access Networks
Authors: MohammadReza HeidariNezhad, Zuriati Ahmad Zukarnain, Nur Izura Udzir, Mohamed Othman
Abstract:
In this paper, we propose APO, a new packet scheduling scheme with Quality of Service (QoS) support for hybrid of real and non-real time services in HSDPA networks. The APO scheduling algorithm is based on the effective channel anticipation model. In contrast to the traditional schemes, the proposed method is implemented based on a cyclic non-work-conserving discipline. Simulation results indicated that proposed scheme has good capability to maximize the channel usage efficiency in compared to another exist scheduling methods. Simulation results demonstrate the effectiveness of the proposed algorithm.Keywords: Scheduling Algorithm, Quality of Service, HSDPA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15903804 Automatic Road Network Recognition and Extraction for Urban Planning
Authors: D. B. L. Bong, K.C. Lai, A. Joseph
Abstract:
The uses of road map in daily activities are numerous but it is a hassle to construct and update a road map whenever there are changes. In Universiti Malaysia Sarawak, research on Automatic Road Extraction (ARE) was explored to solve the difficulties in updating road map. The research started with using Satellite Image (SI), or in short, the ARE-SI project. A Hybrid Simple Colour Space Segmentation & Edge Detection (Hybrid SCSS-EDGE) algorithm was developed to extract roads automatically from satellite-taken images. In order to extract the road network accurately, the satellite image must be analyzed prior to the extraction process. The characteristics of these elements are analyzed and consequently the relationships among them are determined. In this study, the road regions are extracted based on colour space elements and edge details of roads. Besides, edge detection method is applied to further filter out the non-road regions. The extracted road regions are validated by using a segmentation method. These results are valuable for building road map and detecting the changes of the existing road database. The proposed Hybrid Simple Colour Space Segmentation and Edge Detection (Hybrid SCSS-EDGE) algorithm can perform the tasks fully automatic, where the user only needs to input a high-resolution satellite image and wait for the result. Moreover, this system can work on complex road network and generate the extraction result in seconds.Keywords: Road Network Recognition, Colour Space, Edge Detection, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29943803 A Hybrid Fuzzy AGC in a Competitive Electricity Environment
Authors: H. Shayeghi, A. Jalili
Abstract:
This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.
Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17353802 IBFO_PSO: Evaluating the Performance of Bio-Inspired Integrated Bacterial Foraging Optimization Algorithm and Particle Swarm Optimization Algorithm in MANET Routing
Authors: K. Geetha, P. Thangaraj, C. Rasi Priya, C. Rajan, S. Geetha
Abstract:
This paper presents the performance of Integrated Bacterial Foraging Optimization and Particle Swarm Optimization (IBFO_PSO) technique in MANET routing. The BFO is a bio-inspired algorithm, which simulates the foraging behavior of bacteria. It is effectively applied in improving the routing performance in MANET. In results, it is proved that the PSO integrated with BFO reduces routing delay, energy consumption and communication overhead.Keywords: Ant Colony Optimization, Bacterial Foraging Optimization, Hybrid Routing Intelligent Algorithm, Naturally inspired algorithms, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27303801 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19313800 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities
Authors: M. Mourad, K. Mahmoud
Abstract:
Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.
Keywords: Electrification strategy, hybrid electric vehicle, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7893799 Performance of Chaotic Lu System in CDMA Satellites Communications Systems
Authors: K. Kemih, M. Benslama
Abstract:
This paper investigates the problem of spreading sequence and receiver code synchronization techniques for satellite based CDMA communications systems. The performance of CDMA system depends on the autocorrelation and cross-correlation properties of the used spreading sequences. In this paper we propose the uses of chaotic Lu system to generate binary sequences for spreading codes in a direct sequence spread CDMA system. To minimize multiple access interference (MAI) we propose the use of genetic algorithm for optimum selection of chaotic spreading sequences. To solve the problem of transmitter-receiver synchronization, we use the passivity controls. The concept of semipassivity is defined to find simple conditions which ensure boundedness of the solutions of coupled Lu systems. Numerical results are presented to show the effectiveness of the proposed approach.Keywords: About Chaotic Lu system, synchronization, Spreading sequence, Genetic Algorithm. Passive System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17473798 Analysis of Heuristic Based Hybrid Simulated Annealing Algorithm for Multiprocessor Task Scheduling
Authors: Supriya Arya, Sunita Dhingra
Abstract:
Multiprocessor task scheduling problem for dependent and independent tasks is computationally complex problem. Many methods are proposed to achieve optimal running time. As the multiprocessor task scheduling is NP hard in nature, therefore, many heuristics are proposed which have improved the makespan of the problem. But due to problem specific nature, the heuristic method which provide best results for one problem, might not provide good results for another problem. So, Simulated Annealing which is meta heuristic approach is considered. It can be applied on all types of problems. However, due to many runs, meta heuristic approach takes large computation time. Hence, the hybrid approach is proposed by combining the Duplication Scheduling Heuristic and Simulated Annealing (SA) and the makespan results of Simple Simulated Annealing and Hybrid approach are analyzed.
Keywords: Multiprocessor task scheduling Problem, Makespan, Duplication Scheduling Heuristic, Simulated Annealing, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22263797 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks
Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim
Abstract:
Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151