Search results for: Data Center
7445 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.
Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19207444 The Study of Cost Accounting in S Company Based On TDABC
Authors: Heng Ma
Abstract:
Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost.Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost.The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.
Keywords: Third-party logistics enterprises, TDABC, cost management, S company.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24357443 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.
Keywords: Big Data, Next Generation Networks, Network Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25167442 Using Perspective Schemata to Model the ETL Process
Authors: Valeria M. Pequeno, Joao Carlos G. M. Pires
Abstract:
Data Warehouses (DWs) are repositories which contain the unified history of an enterprise for decision support. The data must be Extracted from information sources, Transformed and integrated to be Loaded (ETL) into the DW, using ETL tools. These tools focus on data movement, where the models are only used as a means to this aim. Under a conceptual viewpoint, the authors want to innovate the ETL process in two ways: 1) to make clear compatibility between models in a declarative fashion, using correspondence assertions and 2) to identify the instances of different sources that represent the same entity in the real-world. This paper presents the overview of the proposed framework to model the ETL process, which is based on the use of a reference model and perspective schemata. This approach provides the designer with a better understanding of the semantic associated with the ETL process.
Keywords: conceptual data model, correspondence assertions, data warehouse, data integration, ETL process, object relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15117441 Collaborative Education Practice in a Data Structure E-Learning Course
Authors: Gang Chen, Ruimin Shen
Abstract:
This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.Keywords: Collaborative work, education, data structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16907440 Generic Data Warehousing for Consumer Electronics Retail Industry
Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel
Abstract:
The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.
Keywords: Consumer electronics retail, dimensional data model, data analysis, generic data warehousing, reporting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13857439 Analysis and Evaluation of the Public Responses to Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing in urban streets is one of the most suitable options for solving the traffic problems and environment pollutions in the cities of the country. Unlike its acceptable outcomes, there are problems concerning the necessity to pay by the mass. Regarding the fact that public response in order to succeed in this strategy is so influential, studying their response and behavior to get the feedback and improve the strategies is of great importance. In this study, a questionnaire was used to examine the public reactions to the traffic congestion pricing schemes at the center of Tehran metropolis and the factors involved in people’s decision making in accepting or rejecting the congestion pricing schemes were assessed based on the data obtained from the questionnaire as well as the international experiences. Then, by analyzing and comparing the schemes, guidelines to reduce public objections to them are discussed. The results of reviewing and evaluating the public reactions show that all the pros and cons must be considered to guarantee the success of these projects. Consequently, with targeted public education and consciousness-raising advertisements, prior to initiating a scheme and ensuring the mechanism of the implementation after the start of the project, the initial opposition is reduced and, with the gradual emergence of the real and tangible benefits of its implementation, users’ satisfaction will increase.
Keywords: Demand management, international experiences, traffic congestion pricing, public acceptance, public objection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6517438 An Algebra for Protein Structure Data
Authors: Yanchao Wang, Rajshekhar Sunderraman
Abstract:
This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15437437 A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud
Authors: G. Shruthi, Purohit Shrinivasacharya
Abstract:
The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.Keywords: Attribute, encryption, security, trapdoor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7597436 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28497435 An Algorithm of Finite Capacity Material Requirement Planning System for Multi-stage Assembly Flow Shop
Authors: T. Wuttipornpun, U. Wangrakdiskul, W. Songserm
Abstract:
This paper aims to develop an algorithm of finite capacity material requirement planning (FCMRP) system for a multistage assembly flow shop. The developed FCMRP system has two main stages. The first stage is to allocate operations to the first and second priority work centers and also determine the sequence of the operations on each work center. The second stage is to determine the optimal start time of each operation by using a linear programming model. Real data from a factory is used to analyze and evaluate the effectiveness of the proposed FCMRP system and also to guarantee a practical solution to the user. There are five performance measures, namely, the total tardiness, the number of tardy orders, the total earliness, the number of early orders, and the average flow-time. The proposed FCMRP system offers an adjustable solution which is a compromised solution among the conflicting performance measures. The user can adjust the weight of each performance measure to obtain the desired performance. The result shows that the combination of FCMRP NP3 and EDD outperforms other combinations in term of overall performance index. The calculation time for the proposed FCMRP system is about 10 minutes which is practical for the planners of the factory.Keywords: Material requirement planning, Finite capacity, Linear programming, Permutation, Application in industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23017434 EPR Hiding in Medical Images for Telemedicine
Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar
Abstract:
Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27547433 A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information
Authors: Ali Shariq Imran, M. Younus Javed, Naveed Sarfraz Khattak
Abstract:
This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.
Keywords: Data hiding, image processing, information security, stagonography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23417432 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering
Authors: Yogita, Durga Toshniwal
Abstract:
Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.
Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26377431 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.
Keywords: Gaussian process, Nonlinearity distribution, Particle filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17227430 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios
Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong
Abstract:
This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.
Keywords: Computational analysis, damage scenarios, electronic road signs, finite element, welded connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3907429 Exponentially Weighted Simultaneous Estimation of Several Quantiles
Authors: Valeriy Naumov, Olli Martikainen
Abstract:
In this paper we propose new method for simultaneous generating multiple quantiles corresponding to given probability levels from data streams and massive data sets. This method provides a basis for development of single-pass low-storage quantile estimation algorithms, which differ in complexity, storage requirement and accuracy. We demonstrate that such algorithms may perform well even for heavy-tailed data.Keywords: Quantile estimation, data stream, heavy-taileddistribution, tail index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15337428 Implementation of RSA Blind Signature on CryptO-0N2 Protocol
Authors: Esti Rahmawati Agustina, Is Esti Firmanesa
Abstract:
Blind Signature were introduced by Chaum. In this scheme, a signer can “sign” a document without knowing the document contain. This is particularly important in electronic voting. CryptO-0N2 is an electronic voting protocol which is development of CryptO-0N. During its development this protocol has not been furnished with the requirement of blind signature, so the choice of voters can be determined by counting center. In this paper will be presented of implementation of blind signature using RSA algorithm.
Keywords: Blind signature, electronic voting protocol, RSA algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31927427 Enhanced Data Access Control of Cooperative Environment used for DMU Based Design
Authors: Wei Lifan, Zhang Huaiyu, Yang Yunbin, Li Jia
Abstract:
Through the analysis of the process digital design based on digital mockup, the fact indicates that a distributed cooperative supporting environment is the foundation conditions to adopt design approach based on DMU. Data access authorization is concerned firstly because the value and sensitivity of the data for the enterprise. The access control for administrators is often rather weak other than business user. So authors established an enhanced system to avoid the administrators accessing the engineering data by potential approach and without authorization. Thus the data security is improved.Keywords: access control, DMU, PLM, virtual prototype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14637426 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.
Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31517425 Speed Characteristics of Mixed Traffic Flow on Urban Arterials
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.
Keywords: Normal distribution, percentile speed, speed spread ratio, traffic volume.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42467424 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity
Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail
Abstract:
In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.
Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47277423 Comparative Study of Transformed and Concealed Data in Experimental Designs and Analyses
Authors: K. Chinda, P. Luangpaiboon
Abstract:
This paper presents the comparative study of coded data methods for finding the benefit of concealing the natural data which is the mercantile secret. Influential parameters of the number of replicates (rep), treatment effects (τ) and standard deviation (σ) against the efficiency of each transformation method are investigated. The experimental data are generated via computer simulations under the specified condition of the process with the completely randomized design (CRD). Three ways of data transformation consist of Box-Cox, arcsine and logit methods. The difference values of F statistic between coded data and natural data (Fc-Fn) and hypothesis testing results were determined. The experimental results indicate that the Box-Cox results are significantly different from natural data in cases of smaller levels of replicates and seem to be improper when the parameter of minus lambda has been assigned. On the other hand, arcsine and logit transformations are more robust and obviously, provide more precise numerical results. In addition, the alternate ways to select the lambda in the power transformation are also offered to achieve much more appropriate outcomes.Keywords: Experimental Designs, Box-Cox, Arcsine, Logit Transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16227422 Reasons for Doing Job outside Household and Difficulties Faced by the Working Women of Bangladesh
Authors: Md. Sayeed Akhter, Md. Akhtar Hossain Mazumder, Syeda Afreena Mamun
Abstract:
Bangladesh is a patriarchal and male dominated country. Traditional, cultural, social, and religious values and practices have reinforced the lower status of women accorded to them in society and have limited their opportunities for education, technical and vocational training, and involvement with earning activities outside their households. After independence numbers of women are doing job outside their households. This study attempts to find out the reasons of engaging in earning activities outside households and difficulties faced by upper and lower class working women in Bangladesh. To explore the objectives and research questions of the study descriptive techniques had been used. Survey was conducted among the women who were working in Rajshahi city of Bangladesh and face-to-face interviews were conducted to collect data. Findings of the study illustrates that most of the upper class working women engaged into job because they wanted to utilized their education and to bring solvency in the family, and they spend their income for meeting the needs of all the members of the family. On the other hand, most of the lower class working women involved into earning activities outside their households because they want to bring solvency in their families and spend their income on household expenditure. Both classes became tensed for their children because they had to stay at their working place for long time. Therefore, day care center should be established besides their working place for their children.
Keywords: Working Women, Reasons for Doing Jobs, Working Environment, Difficulties Faced.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17917421 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems
Authors: Barış Can Yalçın
Abstract:
Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.
Keywords: Calibration of sensors, data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43367420 Conceptual Multidimensional Model
Authors: Manpreet Singh, Parvinder Singh, Suman
Abstract:
The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.Keywords: Multidimensional, data precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14587419 Real Time Approach for Data Placement in Wireless Sensor Networks
Authors: Sanjeev Gupta, Mayank Dave
Abstract:
The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.
Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18147418 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18707417 A Software Framework for Predicting Oil-Palm Yield from Climate Data
Authors: Mohd. Noor Md. Sap, A. Majid Awan
Abstract:
Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19797416 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.
Keywords: RDM, multi-source data, big data, U-City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805