Search results for: Canny Edge Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1839

Search results for: Canny Edge Detection

1479 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
1478 Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.

Keywords: Conventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
1477 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process

Authors: Alluru Gopala Krishna, Thella Babu Rao

Abstract:

In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.

Keywords: CNT based nanocoolant, turning, tool wear, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1476 Detection of Breast Cancer in the JPEG2000 Domain

Authors: Fayez M. Idris, Nehal I. AlZubaidi

Abstract:

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
1475 A Real-time Computer Vision System for VehicleTracking and Collision Detection

Authors: Mustafa Kisa, Fatih Mehmet Botsali

Abstract:

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Keywords: Image possessing, vehicle tracking, license plate detection, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
1474 A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Authors: Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen

Abstract:

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).

Keywords: mammogram, microcalcifications, detection, CAD, MammoScan μCaD, VarMet, dictionary learning, texture, FTCM, classification, adaptive thresholding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
1473 Efficiency of Different GLR Test-statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.

Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1472 Mapping Semantic Networks to Undirected Networks

Authors: Marko A. Rodriguez

Abstract:

There exists an injective, information-preserving function that maps a semantic network (i.e a directed labeled network) to a directed network (i.e. a directed unlabeled network). The edge label in the semantic network is represented as a topological feature of the directed network. Also, there exists an injective function that maps a directed network to an undirected network (i.e. an undirected unlabeled network). The edge directionality in the directed network is represented as a topological feature of the undirected network. Through function composition, there exists an injective function that maps a semantic network to an undirected network. Thus, aside from space constraints, the semantic network construct does not have any modeling functionality that is not possible with either a directed or undirected network representation. Two proofs of this idea will be presented. The first is a proof of the aforementioned function composition concept. The second is a simpler proof involving an undirected binary encoding of a semantic network.

Keywords: general-modeling, multi-relational networks, semantic networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
1471 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
1470 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781
1469 Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements

Authors: Sheng-Ming Huang, Nan-Chyuan Tsai, Chih-Che Lin, Chun-Chi Lin

Abstract:

An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.

Keywords: Chemical Mechanical Polishing, Active Magnetic Actuator, On-Line Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1468 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
1467 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: Synthetic Aperture Radar, calibration, corner reflector, KOMPSAT-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
1466 Development of an Infrared Thermography Method with CO2 Laser Excitation, Applied to Defect Detection in CFRP

Authors: Sam-Ang Keo, Franck Brachelet, Florin Breaban, Didier Defer

Abstract:

This paper presents a NDT by infrared thermography with excitation CO2 Laser, wavelength of 10.6 μm. This excitation is the controllable heating beam, confirmed by a preliminary test on a wooden plate 1.2 m x 0.9 m x 1 cm. As the first practice, this method is applied to detecting the defect in CFRP heated by the Laser 300 W during 40 s. Two samples 40 cm x 40 cm x 4.5 cm are prepared, one with defect, another one without defect. The laser beam passes through the lens of a deviation device, and heats the samples placed at a determinate position and area. As a result, the absence of adhesive can be detected. This method displays prominently its application as NDT with the composite materials. This work gives a good perspective to characterize the laser beam, which is very useful for the next detection campaigns.

Keywords: CO2 LASER, Infrared Thermography, NDT, CFRP, Defect Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3015
1465 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
1464 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1463 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n

Authors: Susmita Das, Kala Praveen Bagadi

Abstract:

SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.

Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1462 Tagged Grid Matching Based Object Detection in Wavelet Neural Network

Authors: R. Arulmurugan, P. Sengottuvelan

Abstract:

Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.

Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1461 Reversible Medical Image Watermarking For Tamper Detection And Recovery With Run Length Encoding Compression

Authors: Siau-Chuin Liew, Siau-Way Liew, Jasni Mohd Zain

Abstract:

Digital watermarking in medical images can ensure the authenticity and integrity of the image. This design paper reviews some existing watermarking schemes and proposes a reversible tamper detection and recovery watermarking scheme. Watermark data from ROI (Region Of Interest) are stored in RONI (Region Of Non Interest). The embedded watermark allows tampering detection and tampered image recovery. The watermark is also reversible and data compression technique was used to allow higher embedding capacity.

Keywords: data compression, medical image, reversible, tamperdetection and recovery, watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
1460 Face Localization Using Illumination-dependent Face Model for Visual Speech Recognition

Authors: Robert E. Hursig, Jane X. Zhang

Abstract:

A robust still image face localization algorithm capable of operating in an unconstrained visual environment is proposed. First, construction of a robust skin classifier within a shifted HSV color space is described. Then various filtering operations are performed to better isolate face candidates and mitigate the effect of substantial non-skin regions. Finally, a novel Bhattacharyya-based face detection algorithm is used to compare candidate regions of interest with a unique illumination-dependent face model probability distribution function approximation. Experimental results show a 90% face detection success rate despite the demands of the visually noisy environment.

Keywords: Audio-visual speech recognition, Bhattacharyyacoefficient, face detection,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1459 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
1458 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329
1457 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286
1456 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
1455 Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

Authors: M. Raciti Castelli, A. Castelli, E. Benini

Abstract:

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1454 An Investigation into Sealing Materials for Vacuum Glazing

Authors: Paul Onyegbule, Harjit Singh

Abstract:

Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 0C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 0C with the addition of an adhesive (borax flux) should be used for future vacuum seals.

Keywords: Double glazed windows, U-value, borax powder, edge seal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
1453 Investigating the Fatigue Crack Initiation Location in Interference Fitted and/or bolt Clamped Al 2024-T3 Double Shear Lap Joints

Authors: Babak Abazadeh, Hadi Rezghi Maleki

Abstract:

In this paper the fatigue crack initiation location of double shear lap joints, treated by interference fit and bolt clamping, have been investigated both experimentally and numerically. To do so, using the fracture section of available fatigue tested specimens of interference fitted and torque tightened Aluminum 2024-T3 plates, the crack initiation location was determined. The stress distribution attained from the finite element analysis was used to help explain the results observed in the experimental tests. The results showed that the fatigue crack initiation location changes from top and mid plane at the hole edge to somewhere far from the hole edge (stress concentration region) in different combination of clamping force, interference fit size and applied cyclic load ranges. It is worth mentioning that the fatigue crack initiation location affects the fatigue life of the specimens too.

Keywords: Fatigue crack initiation, interference fit, bolt clamping, double shear lap joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
1452 Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity

Authors: Seyyed Yasser Hashemi

Abstract:

Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.

Keywords: Arabic/Persian document, Baseline, Centre of gravity, Document segmentation, Skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1451 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality

Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad

Abstract:

Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.

Keywords: Silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1450 Automatic Vehicle Identification by Plate Recognition

Authors: Serkan Ozbay, Ergun Ercelebi

Abstract:

Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.

Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7595