Search results for: multi-agent systems (MAS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4386

Search results for: multi-agent systems (MAS)

756 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
755 Smart Product-Service System Innovation with User Experience: A Case Study of Chunmi

Authors: Ying Yu, Wen-Chi Kuo, Tung-Jung Sung

Abstract:

The Product-Service System (PSS) has received widespread attention due to the increasing global competition in manufacturing and service markets. Today’s smart products and services are driven by Internet of things (IoT) technologies which will promote the transformation from traditional PSS to smart PSS. Although the smart PSS has some of technological achievements in businesses, it often ignores the real demands of target users when using products and services. Therefore, designers should know and learn the User Experience (UX) of smart products, services and systems. However, both of academia and industry still lack relevant development experience of smart PSS since it is an emerging field. In doing so, this is a case study of Xiaomi’s Chunmi, the largest IoT platform in the world, and addresses the two major issues: (1) why Chunmi should develop smart PSS strategies with UX; and (2) how Chunmi could successfully implement the strategic objectives of smart PSS through the design. The case study results indicated that: (1) the smart PSS can distinguish competitors by their unique UX which is difficult to duplicate; (2) early user engagement is crucial for the success of smart PSS; and (3) interaction, expectation, and enjoyment can be treated as a three-dimensional evaluation of UX design for smart PSS innovation. In conclusion, the smart PSS can gain competitive advantages through good UX design in the market.

Keywords: Design research, smart PSS, user experience, user engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
754 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
753 Generator Capability Curve Constraint for PSO Based Optimal Power Flow

Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama

Abstract:

An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.

Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
752 Assertion-Driven Test Repair Based on Priority Criteria

Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract:

Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent-preservation has been proposed, it does not take into account the association between test repairs and assertions, leading a large number of irrelevant candidates and decreasing the repair capability. This paper proposes a assertion-driven test repair approach. Furthermore, a intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) broken test cases, which are more effective than the existing intent-preserved test repair approach, and our intent-oriented priority criteria work well.

Keywords: Test repair, test intent, software test, test case evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155
751 ASEAN Citizenship in the Internationalization of Thai Higher Education

Authors: Bella Llego

Abstract:

This research aims to study on “ASEAN Citizenship in the Internationalization of Thai Higher Education.” The purposes of this research are (1) to examine the Thai academics and scholars defined in the concept of internationalization of higher education, (2) to know how Thailand tries to fulfill its internationalization on education goal, (3) to find out the advantages and disadvantages of Thailand hub for higher education in Asia. Sequential mixed methods, qualitative and quantitative research methods were utilized to gather the data collected. By using a qualitative method (individual interviews from key Thai administrators and educators in the international higher education sector), a quantitative method (survey) was utilized to draw upon and to elaborate the recurring themes present during the interviews. The study found that many aspects of Thai international higher education programs received heavy influence from both the American and European higher education systems. Thailand’s role and leadership in the creation and launch of the ASEAN Economic Community (AEC) by 2015 gives its unique context for its internationalization efforts. English is being designated as the language of all Thai international programs; its influence further strengthened being the current language of academia, international business, and the internet, having global influence.

Keywords: ASEAN Citizenship, Internationalization, Thai Higher Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3234
750 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: Model-driven development, wireless sensor networks, data acquisition, separation of concern, layered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
749 Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

Authors: Tarik Rashid, B. Q. Huang, M-T. Kechadi, B. Gleeson

Abstract:

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Keywords: Daily peak load forecasting, neural networks, recurrent neural networks, auto regressive multi-context neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
748 High-Value Health System for All: Technologies for Promoting Health Education and Awareness

Authors: M. P. Sebastian

Abstract:

Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.

Keywords: Bigdata, education, healthcare, ICT, patients, technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
747 Searching for Forensic Evidence in a Compromised Virtual Web Server against SQL Injection Attacks and PHP Web Shell

Authors: Gigih Supriyatno

Abstract:

SQL injection is one of the most common types of attacks and has a very critical impact on web servers. In the worst case, an attacker can perform post-exploitation after a successful SQL injection attack. In the case of forensics web servers, web server analysis is closely related to log file analysis. But sometimes large file sizes and different log types make it difficult for investigators to look for traces of attackers on the server. The purpose of this paper is to help investigator take appropriate steps to investigate when the web server gets attacked. We use attack scenarios using SQL injection attacks including PHP backdoor injection as post-exploitation. We perform post-mortem analysis of web server logs based on Hypertext Transfer Protocol (HTTP) POST and HTTP GET method approaches that are characteristic of SQL injection attacks. In addition, we also propose structured analysis method between the web server application log file, database application, and other additional logs that exist on the webserver. This method makes the investigator more structured to analyze the log file so as to produce evidence of attack with acceptable time. There is also the possibility that other attack techniques can be detected with this method. On the other side, it can help web administrators to prepare their systems for the forensic readiness.

Keywords: Web forensic, SQL injection, web shell, investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
746 Exploring the Potential of Chatbots in Higher Education: A Preliminary Study

Authors: S. Studente, S. Ellis, S. F. Garivaldis

Abstract:

We report upon a study introducing a chatbot to develop learning communities at a London University, with a largely international student base. The focus of the chatbot was twofold; to ease the transition for students into their first year of university study, and to increase study engagement. Four learning communities were created using the chatbot; level 3 foundation, level 4 undergraduate, level 6 undergraduate and level 7 post-graduate. Students and programme leaders were provided with access to the chat bot via mobile app prior to their study induction and throughout the autumn term of 2019. At the end of the term, data were collected via questionnaires and focus groups with students and teaching staff to allow for identification of benefits and challenges. Findings indicated a positive correlation between study engagement and engagement with peers. Students reported that the chatbot enabled them to obtain support and connect to their programme leader. Both staff and students also made recommendation on how engagement could be further enhanced using the bot in terms of; clearly specified purpose, integration with existing university systems, leading by example and connectivity. Extending upon these recommendations, a second pilot study is planned for September 2020, for which the focus will be upon improving attendance rates, student satisfaction and module pass rates.

Keywords: Chatbot, e-learning, learning communities, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
745 Functional Lipids and Bioactive Compounds from Oil Rich Indigenous Seeds

Authors: Azza. S. Naik, S. S. Lele

Abstract:

Indian subcontinent has a plethora of traditional medicine systems that provide promising solutions to lifestyle disorders in an 'all natural way'. Spices and oilseeds hold prominence in Indian cuisine hence the focus of the current study was to evaluate the bioactive molecules from Linum usitatissinum (LU), Lepidium sativum (LS), Nigella sativa (NS) and Guizotia abyssinica (GA) seeds. The seeds were characterized for functional lipids like omega-3 fatty acid, antioxidant capacity, phenolic compounds, dietary fiber and anti-nutritional factors. Analysis of the seeds revealed LU and LS to be a rich source of α-linolenic acid (41.85 ± 0.33%, 26.71 ± 0.63%), an omega 3 fatty acid (using GCMS). While studying antioxidant potential NS seeds demonstrated highest antioxidant ability (61.68 ± 0.21 TEAC/ 100 gm DW) due to the presence of phenolics and terpenes as assayed by the Mass spectral analysis. When screened for anti-nutritional factor cyanogenic glycoside, LS seeds showed content as high as 1674 ± 54 mg HCN / kg. GA is a probable good source of a stable vegetable oil (SFA: PUFA 1:2.3). The seeds showed diversified bioactive profile and hence further studies to use different bio molecules in tandem for the development of a possible 'nutraceutical cocktail' have been initiated..

Keywords: antioxidants, bioactives, functional lipids and oilseeds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
744 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
743 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: Torsional vibration, full-size model, scale model, scaling laws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
742 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: D. Danesh, M. J. Ryan, A. Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible options to enhance the decision-making outcomes in organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: Analytic hierarchy process, decision support systems, multi-criteria decision-making, project portfolio management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4272
741 An Implementation of MacMahon's Partition Analysis in Ordering the Lower Bound of Processing Elements for the Algorithm of LU Decomposition

Authors: Halil Snopce, Ilir Spahiu, Lavdrim Elmazi

Abstract:

A lot of Scientific and Engineering problems require the solution of large systems of linear equations of the form bAx in an effective manner. LU-Decomposition offers good choices for solving this problem. Our approach is to find the lower bound of processing elements needed for this purpose. Here is used the so called Omega calculus, as a computational method for solving problems via their corresponding Diophantine relation. From the corresponding algorithm is formed a system of linear diophantine equalities using the domain of computation which is given by the set of lattice points inside the polyhedron. Then is run the Mathematica program DiophantineGF.m. This program calculates the generating function from which is possible to find the number of solutions to the system of Diophantine equalities, which in fact gives the lower bound for the number of processors needed for the corresponding algorithm. There is given a mathematical explanation of the problem as well. Keywordsgenerating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equationsand : calculus.

Keywords: generating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equations and calculus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
740 Reliability Evaluation of Composite Electric Power System Based On Latin Hypercube Sampling

Authors: R. Ashok Bakkiyaraj, N. Kumarappan

Abstract:

This paper investigates the suitability of Latin Hypercube sampling (LHS) for composite electric power system reliability analysis. Each sample generated in LHS is mapped into an equivalent system state and used for evaluating the annualized system and load point indices. DC loadflow based state evaluation model is solved for each sampled contingency state. The indices evaluated are loss of load probability, loss of load expectation, expected demand not served and expected energy not supplied. The application of the LHS is illustrated through case studies carried out using RBTS and IEEE-RTS test systems. Results obtained are compared with non-sequential Monte Carlo simulation and state enumeration analytical approaches. An error analysis is also carried out to check the LHS method’s ability to capture the distributions of the reliability indices. It is found that LHS approach estimates indices nearer to actual value and gives tighter bounds of indices than non-sequential Monte Carlo simulation.

Keywords: Composite power system, Latin Hypercube sampling, Monte Carlo simulation, Reliability evaluation, Variance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109
739 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
738 SVM-Based Detection of SAR Images in Partially Developed Speckle Noise

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images.

Keywords: Least Square-Support Vector Machine, SyntheticAperture Radar. Partially Developed Speckle, Multi-Look Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
737 A Holistic Framework for Unifying Data Security and Management in Modern Enterprises

Authors: Ashly Joseph

Abstract:

Modern businesses struggle significantly to secure and manage their data properly as the volume and complexity of their data both expand exponentially. Through the use of a multi-layered defense strategy, a centralized management platform, and cutting-edge technologies like AI, this research paper presents a comprehensive framework to integrate data security and management. The constraints of current data protection and management strategies, technological advancements, and the evolving threat landscape are all examined in this article. It suggests best practices for putting into practice integrated data security and governance models, placing an emphasis on ongoing adaptation. The advantages mentioned include a strengthened security posture, simpler procedures, lower costs, and reduced complexity. Additionally, issues including skill shortages, antiquated systems, and cultural obstacles are examined. Security executives and Chief Information Security Officers are given practical advice on how to evaluate, plan, and put into place strong data-centric security and management capabilities. The goal of the paper is to provide a thorough study of the data security and management landscape and to arm contemporary businesses with the knowledge they need to be proactive in protecting their data assets.

Keywords: Data security, security management, cloud computing, cybersecurity, data governance, security architecture, data management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269
736 In Vitro Study of Coded Transmission in Synthetic Aperture Ultrasound Imaging Systems

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

In the paper the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging is presented. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Moreover signal-to-noise ratio and penetration depth are improved while maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16- bit Golay coded sequences at nominal frequency 4 MHz was used. To generate a spherical wave covering the full image region a single element transmission aperture was used and all the elements received the echo signals. The comparison of 2D ultrasound images of the tissue mimicking phantom and in vitro measurements of the beef liver is presented to illustrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Golay coded sequences, radiation pattern, signal processing, synthetic aperture, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
735 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
734 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
733 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: Daylight, window, orientation, energy consumption, design builder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
732 An Automatic Pipeline Monitoring System Based on PCA and SVM

Authors: C. Wan, A. Mita

Abstract:

This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.

Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
731 Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks

Authors: Zelmina Lubovac, Björn Olsson, Jonas Gamalielsson

Abstract:

This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.

Keywords: Modules, systems biology, protein interactionnetworks, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
730 Retarding Potential Analyzer Design and Result Analysis for Ion Energy Distribution Measurement of the Thruster Plume in the Laboratory

Authors: Ma Ya-li, Tang Fu-jun, Xue Yu-xiong, Chen Yi-feng, Gao Xin, Wang Yi, Tian Kai, Yan Ze-dong

Abstract:

Plasma plume will be produced and arrive at spacecraft when the electric thruster operates on orbit. It-s important to characterize the thruster plasma parameters because the plume has significant effects or hazards on spacecraft sub-systems and parts. Through the ground test data of the desired parameters, the major characteristics of the thruster plume will be achieved. Also it is very important for optimizing design of Ion thruster. Retarding Potential Analyzer (RPA) is an effective instrument for plasma ion energy per unit charge distribution measurement. Special RPA should be designed according to certain plume plasma parameters range and feature. In this paper, major principles usable for good RPA design are discussed carefully. Conform to these principles, a four-grid planar electrostatic energy analyzer RPA was designed to avoid false data, and details were discussed including construction, materials, aperture diameter and so on. At the same time, it was designed more suitable for credible and long-duration measurements in the laboratory. In the end, RPA measurement results in the laboratory were given and discussed.

Keywords: Thruster plume ion energy distributions, retarding potential analyzer, ground test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008
729 Integration of Best Practices and Requirements for Preliminary E-Learning Courses

Authors: Sophie Huck, Knut Linke

Abstract:

This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.

Keywords: E-learning evaluation, self-learning, virtual classroom, virtual learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
728 Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation

Authors: Saeid Nahi, Seyed Mohammad Hossein Nabavi

Abstract:

Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.

Keywords: wind turbine, efficiency, wind turbine work points, Random Numbers, reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
727 Temporal Analysis of Magnetic Nerve Stimulation–Towards Enhanced Systems via Virtualisation

Authors: Stefan M. Goetz, Thomas Weyh, Hans-Georg Herzog

Abstract:

The triumph of inductive neuro-stimulation since its rediscovery in the 1980s has been quite spectacular. In lots of branches ranging from clinical applications to basic research this system is absolutely indispensable. Nevertheless, the basic knowledge about the processes underlying the stimulation effect is still very rough and rarely refined in a quantitative way. This seems to be not only an inexcusable blank spot in biophysics and for stimulation prediction, but also a fundamental hindrance for technological progress. The already very sophisticated devices have reached a stage where further optimization requires better strategies than provided by simple linear membrane models of integrate-and-fire style. Addressing this problem for the first time, we suggest in the following text a way for virtual quantitative analysis of a stimulation system. Concomitantly, this ansatz seems to provide a route towards a better understanding by using nonlinear signal processing and taking the nerve as a filter that is adapted for neuronal magnetic stimulation. The model is compact and easy to adjust. The whole setup behaved very robustly during all performed tests. Exemplarily a recent innovative stimulator design known as cTMS is analyzed and dimensioned with this approach in the following. The results show hitherto unforeseen potentials.

Keywords: Theory of magnetic stimulation, inversion, optimization, high voltage oscillator, TMS, cTMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378