Search results for: panel data
7278 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems
Authors: Barış Can Yalçın
Abstract:
Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.
Keywords: Calibration of sensors, data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43387277 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness
Authors: I. Algul, G. Akgun, H. Kurtaran
Abstract:
Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.
Keywords: Generalized differential quadrature method, doubly curved panels, laminated composite materials, small displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9427276 Conceptual Multidimensional Model
Authors: Manpreet Singh, Parvinder Singh, Suman
Abstract:
The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.Keywords: Multidimensional, data precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14607275 Real Time Approach for Data Placement in Wireless Sensor Networks
Authors: Sanjeev Gupta, Mayank Dave
Abstract:
The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.
Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18157274 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18707273 A Software Framework for Predicting Oil-Palm Yield from Climate Data
Authors: Mohd. Noor Md. Sap, A. Majid Awan
Abstract:
Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19817272 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.
Keywords: RDM, multi-source data, big data, U-City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8067271 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.
Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14797270 Distributed Data-Mining by Probability-Based Patterns
Authors: M. Kargar, F. Gharbalchi
Abstract:
In this paper a new method is suggested for distributed data-mining by the probability patterns. These patterns use decision trees and decision graphs. The patterns are cared to be valid, novel, useful, and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. By using the suggested method we will be able to extract the useful information from massive and multi-relational data bases.Keywords: Data-mining, Decision tree, Decision graph, Pattern, Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15587269 Effect of Blanching on the Quality of Microwave Vacuum Dried Dill (Anethum graveolens L.)
Authors: Evita Straumite, Zanda Kruma, Ruta Galoburda, Kaiva Saulite
Abstract:
Dill (Anethum graveolens L.) is a popular herb used in many regions, including Baltic countries. Dill is widely used for flavoring foods and beverages due to its pleasant spicy aroma. The aim of this work was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on sensory properties, color and volatile compounds in dried product. Two blanching mediums were used – water and steam, and for part of samples microwave pretreatment was additionally used. Evaluation of dried dill volatile aroma compounds, color changes and sensory attributes was performed. Results showed that blanching significantly influences the quality of dried dill. After evaluation of volatile aroma compounds, color and sensory properties of microwave vacuum dried dill, as the best method for dill pretreatment was established blanching at 90 °C for 30 s.Keywords: dried dill, sensory panel, sensory properties, aroma compounds, color
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21787268 K-Means for Spherical Clusters with Large Variance in Sizes
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.Keywords: K-Means, Data Clustering, Cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32837267 Representing Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.
Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16207266 Are XBRL-based Financial Reports Better than Non-XBRL Reports? A Quality Assessment
Authors: Zhenkun Wang, Simon S. Gao
Abstract:
Using a scoring system, this paper provides a comparative assessment of the quality of data between XBRL formatted financial reports and non-XBRL financial reports. It shows a major improvement in the quality of data of XBRL formatted financial reports. Although XBRL formatted financial reports do not show much advantage in the quality at the beginning, XBRL financial reports lately display a large improvement in the quality of data in almost all aspects. With the improved XBRL web data managing, presentation and analysis applications, XBRL formatted financial reports have a much better accessibility, are more accurate and better in timeliness.Keywords: Data Quality; Financial Report; Information; XBRL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25697265 Modeling of Random Variable with Digital Probability Hyper Digraph: Data-Oriented Approach
Authors: A. Habibizad Navin, M. Naghian Fesharaki, M. Mirnia, M. Kargar
Abstract:
In this paper we introduce Digital Probability Hyper Digraph for modeling random variable as the hierarchical data-oriented model.Keywords: Data-Oriented Models, Data Structure, DigitalProbability Hyper Digraph, Random Variable, Statistic andProbability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12747264 Wireless Transmission of Big Data Using Novel Secure Algorithm
Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha
Abstract:
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.Keywords: Big data, cooperative jamming, energy balance, physical layer, two-hop transmission, wireless security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21817263 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18657262 Study of Efficiency and Capability LZW++ Technique in Data Compression
Authors: Yusof. Mohd Kamir, Mat Deris. Mohd Sufian, Abidin. Ahmad Faisal Amri
Abstract:
The purpose of this paper is to show efficiency and capability LZWµ in data compression. The LZWµ technique is enhancement from existing LZW technique. The modification the existing LZW is needed to produce LZWµ technique. LZW read one by one character at one time. Differ with LZWµ technique, where the LZWµ read three characters at one time. This paper focuses on data compression and tested efficiency and capability LZWµ by different data format such as doc type, pdf type and text type. Several experiments have been done by different types of data format. The results shows LZWµ technique is better compared to existing LZW technique in term of file size.
Keywords: Data Compression, Huffman Encoding, LZW, LZWµ, RLL, Size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20907261 Impact of Stack Caches: Locality Awareness and Cost Effectiveness
Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang
Abstract:
Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.
Keywords: Hit rate, Locality of program, Stack cache, and Stack data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15097260 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa
Abstract:
Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.
Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57347259 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: Software Metrics, Fault prediction, Cross project, Within project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25477258 Experimental Investigation the Effectiveness of Using Heat Pipe on the Spacecraft Mockup Panel
Authors: M. Abdou, M. K. Khalil
Abstract:
The heat pipe is a thermal device which allows efficient transport of thermal energy. The experimental work of this research was split into two phases; phase 1 is the development of the facilities, material and test rig preparation. Phase 2 is the actual experiments and measurements of the thermal control mockup inside the modified vacuum chamber (MVC). Due to limited funds, the development on the thermal control subsystem was delayed and the experimental facilities such as suitable thermal vacuum chamber with space standard specifications were not available from the beginning of the research and had to be procured over a period of time. In all, these delays extended the project by one and a half year. Thermal control subsystem needs a special facility and equipment to be tested. The available vacuum chamber is not suitable for the thermal tests. Consequently, the modification of the chamber was a must. A vacuum chamber has been modified to be used as a Thermal Vaccum Chamber (TVC). A MVC is a vacuum chamber modified by using a stainless mirror box with perfect reflectability and the infrared lamp connected with the voltage regulator to vary the lamp intensity as it will be illustrated through the paper.
Keywords: Heat pipe, thermal control, thermal vacuum chamber, satellite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6427257 Extreme Temperature Forecast in Mbonge, Cameroon through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the Generalized extreme value(GEV) distribution to analyse temperature data from the Cameroon Development Corporation (C.D.C). By considering two sets of data (Raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data while in the simulated data, the return values show an increasing trend but with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend but with an upper bound. This clearly shows that temperatures in the tropics even-though show a sign of increasing in the future, there is a maximum temperature at which there is no exceedence. The results of this paper are very vital in Agricultural and Environmental research.Keywords: Return level, Generalized extreme value (GEV), Meteorology, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21107256 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17847255 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data
Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon
Abstract:
Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.
Keywords: Ant colony system, biological data, clustering, DNA chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19757254 The Resource Description Framework (RDF) as a Modern Structure for Medical Data
Authors: Gabriela Lindemann, Danilo Schmidt, Thomas Schrader, Dietmar Keune
Abstract:
The amount and heterogeneity of data in biomedical research, notably in interdisciplinary fields, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available but come out of distributed resources. The Charité - University Hospital Berlin has established together with the German Research Foundation (DFG) a new information service centre for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC). Beside a collaborative aspect to create new research groups every single partner or institution of this science information centre making his own data available is allowed to search the whole data pool of the various involved centres. A core task is the implementation of a non-restricting open data structure for the various different data sources. We decided to use a modern RDF model and in a first phase transformed original data coming from the web-based Electronic Patient Record database TBase©.
Keywords: Medical databases, Resource Description Framework (RDF), metadata repository.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20337253 XML Data Management in Compressed Relational Database
Authors: Hongzhi Wang, Jianzhong Li, Hong Gao
Abstract:
XML is an important standard of data exchange and representation. As a mature database system, using relational database to support XML data may bring some advantages. But storing XML in relational database has obvious redundancy that wastes disk space, bandwidth and disk I/O when querying XML data. For the efficiency of storage and query XML, it is necessary to use compressed XML data in relational database. In this paper, a compressed relational database technology supporting XML data is presented. Original relational storage structure is adaptive to XPath query process. The compression method keeps this feature. Besides traditional relational database techniques, additional query process technologies on compressed relations and for special structure for XML are presented. In this paper, technologies for XQuery process in compressed relational database are presented..Keywords: XML, compression, query processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18067252 A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data
Authors: P. Kaladevi, N. Giridharan
Abstract:
The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.Keywords: Big Data, Hadoop, HDFS, Caching, MapReduce, web personalization, e-governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15927251 Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency of attribute values in the cluster and in the data set. The new weighted measure is experimented with the data sets obtained from the UCI data repository. The results are compared with K-Modes and K-representative, which show that the new measure generates clusters with high purity.
Keywords: Clustering, categorical data, K-Modes, weighted dissimilarity measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36927250 Mobile Phone as a Tool for Data Collection in Field Research
Authors: Sandro Mourão, Karla Okada
Abstract:
The necessity of accurate and timely field data is shared among organizations engaged in fundamentally different activities, public services or commercial operations. Basically, there are three major components in the process of the qualitative research: data collection, interpretation and organization of data, and analytic process. Representative technological advancements in terms of innovation have been made in mobile devices (mobile phone, PDA-s, tablets, laptops, etc). Resources that can be potentially applied on the data collection activity for field researches in order to improve this process. This paper presents and discuss the main features of a mobile phone based solution for field data collection, composed of basically three modules: a survey editor, a server web application and a client mobile application. The data gathering process begins with the survey creation module, which enables the production of tailored questionnaires. The field workforce receives the questionnaire(s) on their mobile phones to collect the interviews responses and sending them back to a server for immediate analysis.Keywords: Data Gathering, Field Research, Mobile Phone, Survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20597249 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis
Authors: N. R. N. Idris, S. Baharom
Abstract:
A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.
Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741