Search results for: normal strength concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2501

Search results for: normal strength concrete

2171 A Study of Grounding Grid Characteristics with Conductive Concrete

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

The purpose of this paper is to improve electromagnetic characteristics on grounding grid by applying the conductive concrete. The conductive concrete in this study is under an extra high voltage (EHV, 345kV) system located in a high-tech industrial park or science park. Instead of surrounding soil of grounding grid, the application of conductive concrete can reduce equipment damage and body damage caused by switching surges. The focus of the two cases on the EHV distribution system in a high-tech industrial park is presented to analyze four soil material styles. By comparing several soil material styles, the study results have shown that the conductive concrete can effectively reduce the negative damages caused by electromagnetic transient. The adoption of the style of grounding grid located 1.0 (m) underground and conductive concrete located from the ground surface to 1.25 (m) underground can obviously improve the electromagnetic characteristics so as to advance protective efficiency.

Keywords: Switching surges, grounding gird, electromagnetic transient, conductive concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2170 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

Authors: Ji–Wook Mauk, Yu–Suk Kim, Hyung–Joon Kim

Abstract:

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled reinforced concrete frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was also established for comparison. Non–linear static analyses for the studied frames were performed to investigate their structural behavior under extreme seismic loads and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled reinforced concrete frames are increased and their ductilities are reduced, as infilled masonry walls are higher. Especially, reinforced concrete frames with higher partial infilled masonry walls would experience shear failures. Non–linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frame present stable collapse mechanism while the reinforced concrete frames with partially infilled masonry walls collapse in more brittle manner due to short-column effects.

Keywords: Fully infilled RC frame, partially infilled RC frame, masonry wall, short–column effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
2169 Site Inspection and Evaluation Behavior of Qing Shang Concrete Bridge

Authors: Haleem K. Hussain, Liu Gui Wei, Zhang Lian Zhen, Yongxue Li

Abstract:

It is necessary to evaluate the bridges conditions and strengthen bridges or parts of them. The reinforcement necessary due to some reasons can be summarized as: First, a changing in use of bridge could produce internal forces in a part of structural which exceed the existing cross-sectional capacity. Second, bridges may also need reinforcement because damage due to external factors which reduced the cross-sectional resistance to external loads. One of other factors could listed here its misdesign in some details, like safety of bridge or part of its.This article identify the design demands of Qing Shan bridge located in is in Heilongjiang Province He gang - Nen Jiang Road 303 provincial highway, Wudalianchi area, China, is an important bridge in the urban areas. The investigation program was include the observation and evaluate the damage in T- section concrete beams , prestressed concrete box girder bridges section in additional evaluate the whole state of bridge includes the pier , abutments , bridge decks, wings , bearing and capping beam, joints, ........etc. The test results show that the bridges in general structural condition are good. T beam span No 10 were observed, crack extended upward along the ribbed T beam, and continue to the T beam flange. Crack width varying between 0.1mm to 0.4mm, the maximum about 0.4mm. The bridge needs to be improved flexural bending strength especially at for T beam section.

Keywords: Field investigation, prestressed concrete box girder, maintenance, Qing Shan Bridge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2168 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging

Authors: HoYoung Son, Ki Young Kim, Woo Young Jung

Abstract:

This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.

Keywords: Weir, FEM, concrete, fragility, aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
2167 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self-Compacting Concrete

Authors: Ž. Rudžionis, P. Grigaliūnas, D. Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as secondary raw materials are not in use properly and large amount of it is collected without a clear view of its usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear pozzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: Self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological properties of concrete, slump flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
2166 Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

Authors: Woo Young Jung, Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju

Abstract:

Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.

Keywords: Con’c Track Slab, Asphalt Trackbed, Thermal Load, Friction Condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3442
2165 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Authors: H. Rahman, T. Donchev, D. Petkova

Abstract:

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Keywords: Shear walls, internal FRP reinforcement, cyclic loading, energy dissipation and seismic behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
2164 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt

Authors: Abbaas I. Kareem, H. Nikraz

Abstract:

The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.

Keywords: Recycled concrete aggregates, hot mix asphalt, double coating technique, aggregate crashed value, Marshall parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
2163 Life Cycle Assessment of Precast Concrete Units

Authors: Ya Hong Dong, Conrad T.C. Wong, S. Thomas Ng, James M.W. Wong

Abstract:

Precast concrete has been widely adopted in public housing construction of Hong Kong since the mid-1980s. While pre-casting is considered an environmental friendly solution, there is lack of study to investigate the life cycle performance of precast concrete units. This study aims to bridge the knowledge gap by providing a comprehensive life cycle assessment (LCA) study for two precast elements namely façade and bathroom. The results show that raw material is the most significant contributor of environmental impact accounting for about 90% to the total impact. Furthermore, human health is more affected by the production of precast concrete than the ecosystems.

Keywords: Environment, green, LCA, LCIA, precast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
2162 The Effect of Screw Parameters on Pullout Strength of Screw Fixation in Cervical Spine

Authors: S. Ritddech, P. Aroonjarattham, K. Aroonjarattham

Abstract:

The pullout strength had an effect on the stability of plate screw fixation when inserted in the cervical spine. Nine different titanium alloy bone screws were used to test the pullout strength through finite element analysis. The result showed that the Moss Miami I can bear the highest pullout force at 1,075 N, which causes the maximum von Mises stress at 858.87 MPa, a value over the yield strength of titanium. The bone screw should have large outer diameter, core diameter and proximal root radius to increase the pullout strength.

Keywords: Pullout strength, Screw parameter, Cervical spine, Finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3158
2161 Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete

Authors: Sihem Chaibeddra, Fattoum Kharchi, Fahim Kahlouche, Youcef Benna

Abstract:

In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic.

Keywords: Behavior, compacting, manual, SEC, semi-automatic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
2160 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: Imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
2159 Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach

Authors: Aliakbar Golshani, Armin Ramezanzad

Abstract:

Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.

Keywords: Numerical Simulation, PFC, Tensile Strength, Brazilian Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
2158 Non-Homogeneous Layered Fiber Reinforced Concrete

Authors: Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100mm ×100mm ×400mmwith layers of non-homogeneously distributed fibers inside them were fabricated.

Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.

Keywords: Fiber reinforced concrete, 4-point bending, steel fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
2157 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study, the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
2156 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

Authors: Yogesh Aggarwal, Paratibha Aggarwal

Abstract:

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
2155 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
2154 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: Chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, Slurry infiltrated fiber concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
2153 Concrete Gravity Dams and Traveling Wave Effect along Reservoir Bottom

Authors: H. Mirzabozorg, M. Varmazyari

Abstract:

In the present article, effect of non-uniform excitation of reservoir bottom on nonlinear response of concrete gravity dams is considered. Anisotropic damage mechanics approach is used to model nonlinear behavior of mass concrete in 2D space. The tallest monolith of Pine Flat dam is selected as a case study. The horizontal and vertical components of 1967 Koyna earthquake is used to excite the system. It is found that crest response and stresses within the dam body decrease significantly when the reservoir is excited nonuniformly. In addition, the crack profiles within the dam body and in vicinity of the neck decreases.

Keywords: Concrete gravity dam, dam-reservoir-foundation interaction, traveling wave, damage mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
2152 Some Aspects of Study the Leaching and Acid Corrosion of Concrete

Authors: Alena Sicakova, Adriana Estokova

Abstract:

Although properly made concrete is inherently a durable material, there are many physical and chemical forces in the environment which can contribute to its deterioration. This paper deals with two aspects of concrete durability in chemical aggressive environment: degradation effect of particular aggressive exposure and role of particular mineral additives. Results of the study of leaching and acid corrosion processes in samples prepared with specific dosage of microsilica and zeolite are given in the paper.

Corrosion progress after 60-day exposition is manifested by increasing rate of both Ca and Si release, what is identified by XRF method. Kind and dosage of additions used in experiment was found to be helpful for stabilization of concrete microstructure.The lowest concentration of mean elements in leachates was observed for mixture V1 (microsilica only) unlike the V2 (microsilica + zeolite). It is surprising in the terms of recommendations of zeolite application for acid exposure. Using microsilica only seems to be more effective.

Keywords: Sustainability, durability, concrete, acid corrosion, leaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
2151 Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes

Authors: Napoleana-Anna Chaliasou, Andrew Heath, Kevin Paine

Abstract:

Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.

Keywords: Concrete recycling, geopolymer cement, recycled concrete aggregates, sustainable concrete technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
2150 Probabilistic Modelling of Marine Bridge Deterioration

Authors: P.C. Ryan, A.J. O' Connor

Abstract:

Chloride induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete marine structures. This paper investigates the relative performance of alternative repair options with respect to the deterioration of reinforced concrete bridge elements in marine environments. Focus is placed on the initiation phase of reinforcement corrosion. A laboratory study is described which involved exposing concrete samples to accelerated chloride-ion ingress. The study examined the relative efficiencies of two repair methods, namely Ordinary Portland Cement (OPC) concrete and a concrete which utilised Ground Granulated Blastfurnace Cement (GGBS) as a partial cement replacement. The mix designs and materials utilised were identical to those implemented in the repair of a marine bridge on the South East coast of Ireland in 2007. The results of this testing regime serve to inform input variables employed in probabilistic modelling of deterioration for subsequent reliability based analysis to compare the relative performance of the studied repair options.

Keywords: Deterioration, Marine Bridges, Reinforced Concrete, Reliability, Chloride-ion Ingress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
2149 Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling

Authors: Ilker Kalkan, Saruhan Kartal

Abstract:

Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB.

Keywords: Lateral stability, post-cracking torsional rigidity, uncracked torsional rigidity, critical moment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
2148 Effect of Aggregate Gradation on Moisture Susceptibility and Creep in HMA

Authors: Haider H. Aodah, Yassir Nashaat A. Kareem, Satish Chandra

Abstract:

The present study explains the effect of aggregate gradation on moisture damage in bituminous mixes. Three types of aggregate gradation and two types of binder; VG-30 and Polymer modified bitumen (PMB-40) are used. Moisture susceptibility tests like retained stability and tensile strength ratio (TSR) and static creep test are conducted on Marshall specimens. The creep test was also conducted for conditioned and unconditioned specimens to observe the effect of moisture on creep behaviour. The results indicate that Marshall stability value is higher in PMB-40 mix than VG-30 mixes. Moisture susceptibility of PMB-40 mixes is low when compared with mix using VG-30. The reduction in retained stability, and indirect tensile strength and increase in creep are evaluated for finer, coarser and normal gradation of aggregate to observe the effect of gradation on moisture susceptibility of mixes. The retained stability is least affected when compared with other moisture susceptibility parameters

Keywords: Aggregate gradation, Creep ratio, Retained stability, Stripping, Tensile strength ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037
2147 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: Joint shear strength, reversed cyclic loading, seismic codes, wide beam-column joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
2146 Behavior of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fiber - reinforced polymer. The study evaluates deflection of a selected group of timber beams with concrete slab and additional CFRP reinforcement using different calculating methods and observes differences in results from different calculating methods. An elastic (EN 1995) calculation method and evaluation with FEM analysis software were used.

Keywords: Timber-concrete composite, strengthening, fibre-reinforced polymer, theoretical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
2145 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
2144 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4299
2143 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions

Authors: Rajai Al-Rousan

Abstract:

This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.

Keywords: Predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
2142 Strength Characteristics of Shallow Gassy Sand in the Hangzhou Bay

Authors: Wang Yong, Kong Ling-Wei, Guo Ai-Guo

Abstract:

In view of geological origin, formation of the shallow gas reservoir of the Hangzhou Bay, northern Zhejiang Province, eastern China, and original occurrence characteristics of the gassy sand are analyzed. Generally, gassy sand in scale gas reservoirs is in the state of residual moisture content and the approximate scope of initial matric suction of sand ranges about from 0kPa to100kPa. Results based on GDS triaxial tests show that the classical shear strength formulas of unsaturated soil can not effectively describe basic strength characteristics of gassy sand; the relationship between apparent cohesion and matric suction of gassy sand agrees well with the power function, which can reasonably be used to describe the strength of gassy sand. In the stress path of gas release, shear strength of gassy sand will increase and experimental results show the formula proposed in this paper can effectively predict the strength increment. When saturated strength indexes of the sand are used in engineering design, moderate reduction should be considered.

Keywords: Gassy sand, Gas release, Occurrence characteristics, strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651