Search results for: Industrial ores classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2146

Search results for: Industrial ores classification

1816 TRS: System for Recommending Semantic Web Service Composition Approaches

Authors: Sandeep Kumar, R. B. Mishra

Abstract:

A large number of semantic web service composition approaches are developed by the research community and one is more efficient than the other one depending on the particular situation of use. So a close look at the requirements of ones particular situation is necessary to find a suitable approach to use. In this paper, we present a Technique Recommendation System (TRS) which using a classification of state-of-art semantic web service composition approaches, can provide the user of the system with the recommendations regarding the use of service composition approach based on some parameters regarding situation of use. TRS has modular architecture and uses the production-rules for knowledge representation.

Keywords: Classification, composition techniques, recommendation system, rule-based, semantic web service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1815 SEM Image Classification Using CNN Architectures

Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198
1814 Classification of Fuzzy Petri Nets, and Their Applications

Authors: M.H.Aziz, Erik L.J.Bohez, Manukid Parnichkun, Chanchal Saha

Abstract:

Petri Net (PN) has proven to be effective graphical, mathematical, simulation, and control tool for Discrete Event Systems (DES). But, with the growth in the complexity of modern industrial, and communication systems, PN found themselves inadequate to address the problems of uncertainty, and imprecision in data. This gave rise to amalgamation of Fuzzy logic with Petri nets and a new tool emerged with the name of Fuzzy Petri Nets (FPN). Although there had been a lot of research done on FPN and a number of their applications have been anticipated, but their basic types and structure are still ambiguous. Therefore, in this research, an effort is made to categorize FPN according to their structure and algorithms Further, literature review of the applications of FPN in the light of their classifications has been done.

Keywords: Discrete event systems, Fuzzy logic, Fuzzy Petri nets, and Petri nets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1813 A Review on Image Segmentation Techniques and Performance Measures

Authors: David Libouga Li Gwet, Marius Otesteanu, Ideal Oscar Libouga, Laurent Bitjoka, Gheorghe D. Popa

Abstract:

Image segmentation is a method to extract regions of interest from an image. It remains a fundamental problem in computer vision. The increasing diversity and the complexity of segmentation algorithms have led us firstly, to make a review and classify segmentation techniques, secondly to identify the most used measures of segmentation performance and thirdly, discuss deeply on segmentation philosophy in order to help the choice of adequate segmentation techniques for some applications. To justify the relevance of our analysis, recent algorithms of segmentation are presented through the proposed classification.

Keywords: Classification, image segmentation, measures of performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
1812 Framework for Spare Inventory Management

Authors: Eman M. Wahba, Noha M. Galal, Khaled S. El-Kilany

Abstract:

Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.

Keywords: Demand forecasting, intermittent demand, inventory management, integrated approach, spare parts, spare part classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6573
1811 A Supervised Text-Independent Speaker Recognition Approach

Authors: Tudor Barbu

Abstract:

We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.

Keywords: Text-independent speaker recognition, mel cepstral analysis, speech feature vector, Hausdorff-based metric, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
1810 Scots Pine Needles as Bioindicators in Determining the Aerial Distribution Pattern of Sulphur Emissions around Industrial Plants

Authors: Risto Pöykiö, Jari Hietala, Hannu Nurmesniemi

Abstract:

In this study, the Scots pine (Pinus sylvestris L.) C needles (i.e. the current-year-needles) were used as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial point sources at Kemi, Northern Finland. The average sulphur concentration in the C needles was 897 mg/kg (d.w.), with a standard deviation of 118 mg/kg (d.w.) and range 740 – 1350 mg/kg (d.w.). According to results in this study, Scots pine needles (Pinus sylvestris L.) appear to be an ideal bioindicators for identifying atmospheric sulphur pollution derived from industrial plants and can complement the information provided by plant mapping studies around industrial plants.

Keywords: Emission, Sulphur, Scots Pine, Pinus sylvestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1809 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: Industrial drying, Modeling, Pistachio, quality properties, Traditional drying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
1808 Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique

Authors: Einalou Z., Najafi Z., Maghooli K. Zandi Y, Sheibeigi A

Abstract:

In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.

Keywords: Cepstrum, databank, digestive disease, acousticsignal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1807 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
1806 A Semantic Recommendation Procedure for Electronic Product Catalog

Authors: Hadi Khosravi Farsani, Mohammadali Nematbakhsh

Abstract:

To overcome the product overload of Internet shoppers, we introduce a semantic recommendation procedure which is more efficient when applied to Internet shopping malls. The suggested procedure recommends the semantic products to the customers and is originally based on Web usage mining, product classification, association rule mining, and frequently purchasing. We applied the procedure to the data set of MovieLens Company for performance evaluation, and some experimental results are provided. The experimental results have shown superior performance in terms of coverage and precision.

Keywords: Personalization, Recommendation, OWL Ontology, Electronic Catalogs, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
1805 Reuse of Huge Industrial Areas

Authors: Martina Perinkova, Lenka Kolarcikova, Marketa Twrda

Abstract:

Brownfields are one of the most important problems that must be solved by today's cities. The topic of this article is description of developing a comprehensive transformation of postindustrial area of the former iron factory national cultural heritage lower Vítkovice. City of Ostrava used to be industrial superpower of the Czechoslovak Republic, especially in the area of coal mining and iron production, after declining industrial production and mining in the 80s left many unused areas of former factories generally brownfields and backfields. Since the late 90s we are observing how the city officials or private entities seeking to remedy this situation. Regeneration of brownfields is a very expensive and long-term process. The area is now rebuilt for tourists and residents of the city in the entertainment, cultural, and social center. It was necessary do the reconstruction of the industrial monuments. Equally important was the construction of new buildings, which helped reusing of the entire complex. This is a unique example of transformation of technical monuments and completion of necessary new objects, so that the area could start working again and reintegrate back into the urban system.

Keywords: Brownfields, conversion, historical and industrial buildings, reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
1804 Feature-Driven Classification of Musical Styles

Authors: A. Buzzanca, G. Castellano, A.M. Fanelli

Abstract:

In this paper we address the problem of musical style classification, which has a number of applications like indexing in musical databases or automatic composition systems. Starting from MIDI files of real-world improvisations, we extract the melody track and cut it into overlapping segments of equal length. From these fragments, some numerical features are extracted as descriptors of style samples. We show that a standard Bayesian classifier can be conveniently employed to build an effective musical style classifier, once this set of features has been extracted from musical data. Preliminary experimental results show the effectiveness of the developed classifier that represents the first component of a musical audio retrieval system

Keywords: Musical style, Bayesian classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
1803 Core Competence Development while Carrying out Organizational Changes

Authors: Olga A. Shvetsova

Abstract:

The paper contains the different issues of competence management in industrial companies. The theoretical bases of human resources management and practical issues of innovative enterprises’ competitiveness are considered. The research is focused on the modern industrial enterprise changes management problems; it focuses on the effective personnel management of industrial enterprises on the basis of competence approach. The influence of organizational changes on the competence development is discussed. The need for development of the new technologies is mentioned, proposal is based on competence-based approach in personnel management including in the conditions of carrying out organizational changes; methods of acquisition and development of missing key professional competences are discussed; importance of key competencies in forming competitive advantage of the organization is mentioned.

Keywords: Competence model, development of industrial company, organizational changes, competitiveness, core competencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
1802 Integration Process of Industrial Design and Engineering Design

Authors: Kazuhide Sugiyama, Hiroshi Osada

Abstract:

Lately management strategy that put Industrial Design (ID) in its core is recognized more important, as technology and price alone cannot differentiate a product. The needs to shorten the time to develop a product also shorten the development period of ID, and it necessitates the ID process management. This research analyzes the status of integration process of ID and Engineering Design (ED) of office equipment that requires the collaboration of ID and ED to clarify the issues for the efficiency of the development and to propose solutions.

Keywords: Industrial Design (ID), Engineering Design (ED), Integration process, Office equipment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1801 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao

Abstract:

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
1800 Taxonomy of Structured P2P Overlay Networks Security Attacks

Authors: Zied Trifa, Maher Khemakhem

Abstract:

The survey and classification of the different security attacks in structured peer-to-peer (P2P) overlay networks can be useful to computer system designers, programmers, administrators, and users. In this paper, we attempt to provide a taxonomy of structured P2P overlay networks security attacks. We have specially focused on the way these attacks can arise at each level of the network. Moreover, we observed that most of the existing systems such as Content Addressable Network (CAN), Chord, Pastry, Tapestry, Kademlia, and Viceroy suffer from threats and vulnerability which lead to disrupt and corrupt their functioning. We hope that our survey constitutes a good help for who-s working on this area of research.

Keywords: P2P, Structured P2P Overlay Networks, DHT, Security, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1799 A Kernel Classifier using Linearised Bregman Iteration

Authors: K. A. D. N. K Wimalawarne

Abstract:

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1798 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: Mung bean, near infrared, germinatability, hard seed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1797 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
1796 Design of a Neural Networks Classifier for Face Detection

Authors: F. Smach, M. Atri, J. Mitéran, M. Abid

Abstract:

Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.

Keywords: Classification, Face Detection, FPGA Hardware description, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
1795 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1794 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
1793 Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die

Authors: Mehdi Modabberifar, Behrouz Raad, Bahman Mirzakhani

Abstract:

Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.

Keywords: Die casting, finite element, flange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
1792 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
1791 Wave Atom Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.

Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
1790 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1789 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1788 Comparative Study Using Weka for Red Blood Cells Classification

Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
1787 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977