Search results for: Decision tree modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3691

Search results for: Decision tree modeling

3361 Survey on Strategic Games and Decision Making

Authors: S. Madhavi, K. Baala Srinivas, G. Bharath, R. K. Indhuja, M. Kowser Chandini

Abstract:

Game theory is the study of how people interact and make decisions to handle competitive situations. It has mainly been developed to study decision making in complex situations. Humans routinely alter their behaviour in response to changes in their social and physical environment. As a consequence, the outcomes of decisions that depend on the behaviour of multiple decision makers are difficult to predict and require highly adaptive decision-making strategies. In addition to the decision makers may have preferences regarding consequences to other individuals and choose their actions to improve or reduce the well-being of others. Nash equilibrium is a fundamental concept in the theory of games and the most widely used method of predicting the outcome of a strategic interaction in the social sciences. A Nash Equilibrium exists when there is no unilateral profitable deviation from any of the players involved. On the other hand, no player in the game would take a different action as long as every other player remains the same.

Keywords: Game Theory, Nash Equilibrium, Rules of Dominance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
3360 A Rough-set Based Approach to Design an Expert System for Personnel Selection

Authors: Ehsan Akhlaghi

Abstract:

Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.

Keywords: Decision Making, Expert System, PersonnelSelection, Rough Set Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
3359 Mining Educational Data to Support Students’ Major Selection

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well. 

Keywords: Data mining technique, the decision support system, knowledge and decision rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3284
3358 A Simulation Model for Bid Price Decision Making

Authors: R. Sammoura

Abstract:

In Lebanon, public construction projects are awarded to the contractor submitting the lowest bid price based on a competitive bidding process. The contractor has to make a strategic decision in choosing the appropriate bid price that will offer a satisfactory profit with a greater probability to win. A simulation model for bid price decision making based on the lowest bid price evaluation is developed. The model, built using Crystal Ball decisionengineering software, considers two main factors affecting the bidding process: the number of qualified bidders and the size of the project. The validity of the model is tested on twelve separate projects. The study also shows how to use the model to conduct risk analysis and help any specific contractor to decide on his bid price with associated certainty level in a scientific method.

Keywords: Bid price, Competition, Decision making, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
3357 e Collaborative Decisions – a DSS for Academic Environment

Authors: C. Oprean, C. V. Kifor, S. C. Negulescu, C. Candea, L. Oprean, C. Oprean, S. Kifor

Abstract:

This paper presents an innovative approach within the area of Group Decision Support System (GDSS) by using tools based on intelligent agents. It introduces iGDSS, a software platform for decision support and collaboration and an application of this platform - eCollaborative Decisions - for academic environment, all these developed within a framework of a research project.

Keywords: Group Decision Support System, Managerial Academic Decisions, Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
3356 Futures Trading: Design of a Strategy

Authors: Jan Zeman

Abstract:

The paper describes the futures trading and aims to design the speculators trading strategy. The problem is formulated as the decision making task and such as is solved. The solution of the task leads to complex mathematical problems and the approximations of the decision making is demanded. Two kind of approximation are used in the paper: Monte Carlo for the multi-step prediction and iteration spread in time for the optimization. The solution is applied to the real-market data and the results of the off-line experiments are presented.

Keywords: futures trading, decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
3355 Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding

Authors: K.Somasundaram, I.Kaspar Raj

Abstract:

In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC.

Keywords: Bit plane, Block Truncation Coding, Image compression, lossy compression, quad tree segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
3354 Decision Maturity Framework: Introducing Maturity In Heuristic Search

Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes

Abstract:

Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.

Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
3353 Modeling Concave Globoidal Cam with Swinging Roller Follower : A Case Study

Authors: Nguyen Van Tuong, Premysl Pokorny

Abstract:

This paper describes a computer-aided design for design of the concave globoidal cam with cylindrical rollers and swinging follower. Four models with different modeling methods are made from the same input data. The input data are angular input and output displacements of the cam and the follower and some other geometrical parameters of the globoidal cam mechanism. The best cam model is the cam which has no interference with the rollers when their motions are simulated in assembly conditions. The angular output displacement of the follower for the best cam is also compared with that of in the input data to check errors. In this study, Pro/ENGINEER® Wildfire 2.0 is used for modeling the cam, simulating motions and checking interference and errors of the system.

Keywords: Globoidal cam, sweep, pitch surface, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3665
3352 Qualitative Possibilistic Influence Diagrams

Authors: Wided GuezGuez, Nahla Ben Amor, Khaled Mellouli

Abstract:

Influence diagrams (IDs) are one of the most commonly used graphical decision models for reasoning under uncertainty. The quantification of IDs which consists in defining conditional probabilities for chance nodes and utility functions for value nodes is not always obvious. In fact, decision makers cannot always provide exact numerical values and in some cases, it is more easier for them to specify qualitative preference orders. This work proposes an adaptation of standard IDs to the qualitative framework based on possibility theory.

Keywords: decision making, influence diagrams, qualitative utility, possibility theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
3351 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: Bias, expert, high risk industry, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
3350 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
3349 Modeling and Simulation of Practical Metamaterial Structures

Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani

Abstract:

Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.

Keywords: Metamaterials, SRR, HIS, CPW, IDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
3348 Meta Random Forests

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.

Keywords: Random Forests [RF], ensembles, UCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
3347 Review of Models of Consumer Behaviour and Influence of Emotions in the Decision Making

Authors: Mikel Alonso López

Abstract:

In order to begin the process of studying the task of making consumer decisions, the main decision models must be analyzed. The objective of this task is to see if there is a presence of emotions in those models, and analyze how authors that have created them consider their impact in consumer choices. In this paper, the most important models of consumer behavior are analysed. This review is useful to consider an unproblematic background knowledge in the literature. The order that has been established for this study is chronological.

Keywords: Consumer behaviour, emotions, decision making, consumer psychology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
3346 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.

Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
3345 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
3344 Clinical Benefits of an Embedded Decision Support System in Anticoagulant Control

Authors: Tony Austin, Shanghua Sun, Nathan Lea, Steve Iliffe, Dipak Kalra, David Ingram, David Patterson

Abstract:

Computer-based decision support (CDSS) systems can deliver real patient care and increase chances of long-term survival in areas of chronic disease management prone to poor control. One such CDSS, for the management of warfarin, is described in this paper and the outcomes shown. Data is derived from the running system and show a performance consistently around 20% better than the applicable guidelines.

Keywords: "Decision Support", "Anticoagulant Control"

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
3343 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
3342 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
3341 3DARModeler: a 3D Modeling System in Augmented Reality Environment

Authors: Trien V. Do, Jong-Weon Lee

Abstract:

This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.

Keywords: 3D Modeling, Augmented Reality, GeometricModeling, Virtual Reality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
3340 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph

Authors: Sumit Kumar, Sunil Kumar, Chandan Deep Singh

Abstract:

This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software.

Keywords: Bond graph modeling, dynamics. modeling, Rayleigh beam, underwater robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013
3339 The Induced Generalized Hybrid Averaging Operator and its Application in Financial Decision Making

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We present the induced generalized hybrid averaging (IGHA) operator. It is a new aggregation operator that generalizes the hybrid averaging (HA) by using generalized means and order inducing variables. With this formulation, we get a wide range of mean operators such as the induced HA (IHA), the induced hybrid quadratic averaging (IHQA), the HA, etc. The ordered weighted averaging (OWA) operator and the weighted average (WA) are included as special cases of the HA operator. Therefore, with this generalization we can obtain a wide range of aggregation operators such as the induced generalized OWA (IGOWA), the generalized OWA (GOWA), etc. We further generalize the IGHA operator by using quasi-arithmetic means. Then, we get the Quasi-IHA operator. Finally, we also develop an illustrative example of the new approach in a financial decision making problem. The main advantage of the IGHA is that it gives a more complete view of the decision problem to the decision maker because it considers a wide range of situations depending on the operator used.

Keywords: Decision making, Aggregation operators, OWA operator, Generalized means, Selection of investments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
3338 Context-aware Recommender Systems using Data Mining Techniques

Authors: Kyoung-jae Kim, Hyunchul Ahn, Sangwon Jeong

Abstract:

This study proposes a novel recommender system to provide the advertisements of context-aware services. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user-s needs type. In particular, we employ a classification rule to understand user-s needs type using a decision tree algorithm. In addition, we collect primary data from the mobile phone users and apply them to the proposed model to validate its effectiveness. Experimental results show that the proposed system makes more accurate and satisfactory advertisements than comparative systems.

Keywords: Location-based advertisement, Recommender system, Collaborative filtering, User needs type, Mobile user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
3337 Enhanced-Delivery Overlay Multicasting Scheme by Optimizing Bandwidth and Latency Discrepancy Ratios

Authors: Omar F. Hamad, T. Marwala

Abstract:

With optimized bandwidth and latency discrepancy ratios, Node Gain Scores (NGSs) are determined and used as a basis for shaping the max-heap overlay. The NGSs - determined as the respective bandwidth-latency-products - govern the construction of max-heap-form overlays. Each NGS is earned as a synergy of discrepancy ratio of the bandwidth requested with respect to the estimated available bandwidth, and latency discrepancy ratio between the nodes and the source node. The tree leads to enhanceddelivery overlay multicasting – increasing packet delivery which could, otherwise, be hindered by induced packet loss occurring in other schemes not considering the synergy of these parameters on placing the nodes on the overlays. The NGS is a function of four main parameters – estimated available bandwidth, Ba; individual node's requested bandwidth, Br; proposed node latency to its prospective parent (Lp); and suggested best latency as advised by source node (Lb). Bandwidth discrepancy ratio (BDR) and latency discrepancy ratio (LDR) carry weights of α and (1,000 - α ) , respectively, with arbitrary chosen α ranging between 0 and 1,000 to ensure that the NGS values, used as node IDs, maintain a good possibility of uniqueness and balance between the most critical factor between the BDR and the LDR. A max-heap-form tree is constructed with assumption that all nodes possess NGS less than the source node. To maintain a sense of load balance, children of each level's siblings are evenly distributed such that a node can not accept a second child, and so on, until all its siblings able to do so, have already acquired the same number of children. That is so logically done from left to right in a conceptual overlay tree. The records of the pair-wise approximate available bandwidths as measured by a pathChirp scheme at individual nodes are maintained. Evaluation measures as compared to other schemes – Bandwidth Aware multicaSt architecturE (BASE), Tree Building Control Protocol (TBCP), and Host Multicast Tree Protocol (HMTP) - have been conducted. This new scheme generally performs better in terms of trade-off between packet delivery ratio; link stress; control overhead; and end-to-end delays.

Keywords: Overlay multicast, Available bandwidth, Max-heapform overlay, Induced packet loss, Bandwidth-latency product, Node Gain Score (NGS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
3336 Proposal of Design Method in the Semi-Acausal System Model

Authors: Junji Kaneko, Shigeyuki Haruyama, Ken Kaminishi, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physic fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: System Model, Physical Models, Empirical Models, Conservation Law, Differential Algebraic Equation, Object-Oriented.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
3335 Coloured Reconfigurable Nets for Code Mobility Modeling

Authors: Kahloul Laid, Chaoui Allaoua

Abstract:

Code mobility technologies attract more and more developers and consumers. Numerous domains are concerned, many platforms are developed and interest applications are realized. However, developing good software products requires modeling, analyzing and proving steps. The choice of models and modeling languages is so critical on these steps. Formal tools are powerful in analyzing and proving steps. However, poorness of classical modeling language to model mobility requires proposition of new models. The objective of this paper is to provide a specific formalism “Coloured Reconfigurable Nets" and to show how this one seems to be adequate to model different kinds of code mobility.

Keywords: Code mobility, modelling mobility, labelled reconfigurable nets, Coloured reconfigurable nets, mobile code design paradigms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
3334 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: Decision making, human capital analytics, talent management, talent value chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
3333 Comparison of CPW Fed Microstrip Patch Antennas with Varied Ground Structures for Fixed Satellite Applications

Authors: Deepanshu Kaushal, T. Shanmuganantham

Abstract:

This paper draws a comparison between two microstrip patch antennas having different ground structures. The designs utilize 45 mm x 40 mm x 1.6 mm FR4 epoxy substrate (relative permittivity of 4.4 and dielectric loss tangent of 0.02) and CPW feeding technique. The design 1 uses conducting partial ground plates along the two sides of the radiating X’mas tree shaped patch. The design 2 utilizes an X’mas tree shaped slotted ground structure that features a circular radiating patch. A comparative analysis of results of both designs has been carried. The two designs are intended to serve the fixed satellite applications in X and Ku band respectively.

Keywords: CPW feed, partial ground structures, slotted ground structures, fixed satellite applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
3332 Kirchhoff’s Depth Migration over Heterogeneous Velocity Models with Ray Tracing Modeling Approach

Authors: Alok Kumar Routa, Priya Ranjan Mohanty

Abstract:

Complex seismic signatures are generated due to the complexity of the subsurface which is difficult to interpret. In the present study, an attempt has been made to model the complex subsurface using the Ray tracing modeling technique. Add to this, for the imaging of these geological features, Kirchhoff’s prestack depth migration is applied over the synthetic common shot gather dataset. It is found that the Kirchhoff’s migration technique in addition with the Ray tracing modeling concept has the flexibility towards the imaging of various complex geology which gives satisfactory results with proper delineation of the reflectors at their respective true depth position. The entire work has been carried out under the MATLAB environment.

Keywords: Kirchhoff’s migration, Prestack depth migration, Ray tracing modeling, Velocity model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374