Search results for: Circular shear panel damper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1094

Search results for: Circular shear panel damper

764 Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay

Authors: Meei-Hoan Ho, Chee-Ming Chan

Abstract:

Soft clays are defined as cohesive soil whose water content is higher than its liquid limits. Thus, soil-cement mixing is adopted to improve the ground conditions by enhancing the strength and deformation characteristics of the soft clays. For the above mentioned reasons, a series of laboratory tests were carried out to study some fundamental mechanical properties of cement stabilized soft clay. The test specimens were prepared by varying the portion of ordinary Portland cement to the soft clay sample retrieved from the test site of RECESS (Research Centre for Soft Soil). Comparisons were made for both homogeneous and columnar system specimens by relating the effects of cement stabilized clay of for 0, 5 and 10 % cement and curing for 3, 28 and 56 days. The mechanical properties examined included one-dimensional compressibility and undrained shear strength. For the mechanical properties, both homogeneous and columnar system specimens were prepared to examine the effect of different cement contents and curing periods on the stabilized soil. The one-dimensional compressibility test was conducted using an oedometer, while a direct shear box was used for measuring the undrained shear strength. The higher the value of cement content, the greater is the enhancement of the yield stress and the decrease of compression index. The value of cement content in a specimen is a more active parameter than the curing period.

Keywords: Soft soil, Oedometer, Direct shear box, Cementstabilisedcolumn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
763 Strengthen of Cold-Formed Steel Column with Ferrocement Jacket: Push out Tests

Authors: Khaled Alenezi, Talal Alhajri, M. M. Tahir, Mohamed Ragaee K. Badr, S. O. Bamaga

Abstract:

The population growth in the world requires an increase in demand of residential and housing construction. Using lightweight construction materials such as cold formed steel sections and ferrocement could be an alternate solution to foster the construction industry. In this study, a new composite column is introduced. It consists of cold formed steel section and ferrocement jacket. The ferrocement jacket was constructed using self-compacting mortar with two wire steel mesh of 550 MPa yield strength. Experimental push out tests was conducted to investigate the strength capacities and behavior of proposed shear connectors namely, bolt, bar-angle and self-drilling screw shear connectors. It was found that bolt connector showed the best behavior followed by bar-angle. Also, it was concluded that the ferrocement could be used to strength and improve the behavior of cold formed steel column.

Keywords: Cold formed steel, composite column, push out test, shear connector, ferrocement, strengthen method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
762 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef. A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronic color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to act as the main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam fixed at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works accurately under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: Robotics manipulator, 5-DOF manipulator, image processing, Color sorting, Pick-and-place.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
761 Methodology to Assess the Circularity of Industrial Processes

Authors: B. F. Oliveira, T. I. Gonçalves, M. M. Sousa, S. M. Pimenta, O. F. Ramalho, J. B. Cruz, F. V. Barbosa

Abstract:

The EU Circular Economy action plan, launched in 2020, is one of the major initiatives to promote the transition into a more sustainable industry. The circular economy is a popular concept used by many companies nowadays. Some industries are better forwarded to this reality than others, and the tannery industry is a sector that needs more attention due to its strong environmental impact caused by its dimension, intensive resources consumption, lack of recyclability, and second use of its products, as well as the industrial effluents generated by the manufacturing processes. For these reasons, the zero-waste goal and the European objectives are further being achieved. In this context, a need arises to provide an effective methodology that allows to determine the level of circularity of tannery companies. Regarding the complexity of the circular economy concept, few factories have a specialist in sustainability to assess the company’s circularity or have the ability to implement circular strategies that could benefit the manufacturing processes. Although there are several methodologies to assess circularity in specific industrial sectors, there is not an easy go-to methodology applied in factories aiming for cleaner production. Therefore, a straightforward methodology to assess the level of circularity, in this case of a tannery industry, is presented and discussed in this work, allowing any company to measure the impact of its activities. The methodology developed consists in calculating the Overall Circular Index (OCI) by evaluating the circularity of four key areas -energy, material, economy and social- in a specific factory. The index is a value between 0 and 1, where 0 means a linear economy, and 1 is a complete circular economy. Each key area has a sub-index, obtained through key performance indicators (KPIs) regarding each theme, and the OCI reflects the average of the four sub-indexes. Some fieldwork in the appointed company was required in order to obtain all the necessary data. By having separate sub-indexes, one can observe which areas are more linear than others. Thus, it is possible to work on the most critical areas by implementing strategies to increase the OCI. After these strategies are implemented, the OCI is recalculated to check the improvements made and any other changes in the remaining sub-indexes. As such, the methodology in discussion works through continuous improvement, constantly reevaluating and improving the circularity of the factory. The methodology is also flexible enough to be implemented in any industrial sector by adapting the KPIs. This methodology was implemented in a selected Portuguese small and medium-sized enterprises (SME) tannery industry and proved to be a relevant tool to measure the circularity level of the factory. It was witnessed that it is easier for non-specialists to evaluate circularity and identify possible solutions to increase its value, as well as learn how one action can impact their environment. In the end, energetic and environmental inefficiencies were identified and corrected, increasing the sustainability and circularity of the company. Through this work, important contributions were provided, helping the Portuguese SMEs to achieve the European and UN 2030 sustainable goals.

Keywords: Circular economy, circularity index, sustainability, tannery industry, zero-waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96
760 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
759 Experimental Tests of a Vertical-Axis Wind Turbine with Twisted Blades

Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

An experimental campaign of measurements for a Darrieus vertical-axis wind turbine (VAWT) is presented for open field conditions. The turbine is characterized by a twisted bladed design, each blade being placed at a fixed distance from the rotational shaft. The experimental setup to perform the acquisitions is described. The results are lower than expected, due to the high influence of the wind shear.

Keywords: Vertical-axis wind turbine, Darrieus wind turbine, twisted blades, experimental measurements, wind shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
758 Free Vibration Analysis of Conical Helicoidal Rods Having Elliptical Cross Sections Positioned in Different Orientation

Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

In this study, the free vibration analysis of conical helicoidal rods with two different elliptically oriented cross sections is investigated and the results are compared by the circular cross-section keeping the net area for all cases equal to each other. Problems are solved by using the mixed finite element formulation. Element matrices based on Timoshenko beam theory are employed. The finite element matrices are derived by directly inserting the analytical expressions (arc length, curvature, and torsion) defining helix geometry into the formulation. Helicoidal rod domain is discretized by a two-noded curvilinear element. Each node of the element has 12 DOFs, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. A parametric study is performed to investigate the influence of elliptical cross sectional geometry and its orientation over the natural frequencies of the conical type helicoidal rod.

Keywords: Conical helix, elliptical cross section, finite element, free vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
757 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Authors: S. Ganesh, J. Janani, G. Besliya Angel

Abstract:

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.

Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5969
756 Experimental Determination of Large Strain Localization in Cut Steel Chips

Authors: A. Simoneau

Abstract:

Metal cutting is a severe plastic deformation process involving large strains, high strain rates, and high temperatures. Conventional analysis of the chip formation process is based on bulk material deformation disregarding the inhomogeneous nature of the material microstructure. A series of orthogonal cutting tests of AISI 1045 and 1144 steel were conducted which yielded similar process characteristics and chip formations. With similar shear angles and cut chip thicknesses, shear strains for both chips were found to range from 2.0 up to 2.8. The manganese-sulfide (MnS) precipitate in the 1144 steel has a very distinct and uniform shape which allows for comparison before and after chip formation. From close observations of MnS precipitates in the cut chips it is shown that the conventional approach underestimates plastic strains in metal cutting. Experimental findings revealed local shear strains around a value of 6. These findings and their implications are presented and discussed.

Keywords: Machining, metal cutting, microstructure, plastic strains, local strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
755 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method

Authors: M. Najafi

Abstract:

In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.

Keywords: Rotor dynamic analysis, Finite element method, shaft train, Campbell diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
754 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: Landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
753 Determining Moment-Curvature Relationship of Reinforced Concrete Rectangular Shear Walls

Authors: Gokhan Dok, Hakan Ozturk, Aydin Demir

Abstract:

The behavior of reinforced concrete (RC) members is quite important in RC structures. When evaluating the performance of structures, the nonlinear properties are defined according to the cross sectional behavior of RC members. To be able to determine the behavior of RC members, its cross sectional behavior should be known well. The moment-curvature (MC) relationship is used to represent cross sectional behavior. The MC relationship of RC cross section can be best determined both experimentally and numerically. But, experimental study on RC members is very difficult. The aim of the study is to obtain the MC relationship of RC shear walls. Additionally, it is aimed to determine the parameters which affect MC relationship. While obtaining MC relationship of RC members, XTRACT which can represent robustly the MC relationship is used. Concrete quality, longitudinal and transverse reinforcing ratios, are selected as parameters which affect MC relationship. As a result of the study, curvature ductility and effective flexural stiffness are determined using this parameter. Effective flexural stiffness is compared with the values defined in design codes.

Keywords: Moment-curvature, reinforced concrete, shear wall, numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
752 Evaluation of Structural Behavior of Wide Sleepers on Asphalt Trackbed Due to Embedded Shear Keys

Authors: Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju, Woo Young Jung

Abstract:

Korea Train eXpress (KTX) is now being operated, which allows Korea being one of the countries that operates the high-speed rail system. The high-speed rail has its advantage of short time transportation of population and materials, which lead to many researches performed in this matter. In the case of high speed classical trackbed system, the maintenance and usability of gravel ballast system is costly. Recently, the concrete trackbed structure has been introduced as a replacement of classical trackbed system. In this case, the sleeper plays a critical role. Current study investigated to develop the track sleepers readily applicable to the top of the asphalt trackbed, as part of the trcakbed study utilizing the asphalt material. Among many possible shapes and design of sleepers, current study proposed two types of wide-sleepers according to the shear-key installation method. The structural behavior analysis and safety evaluation on each case was conducted using Korean design standard.

Keywords: Wide Sleepers, Asphalt, High-Speed Railway, Shear-key.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
751 Clamped-clamped Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with a Ring based on Third Order Shear Deformation Theory

Authors: M.Pourmahmoud, M.Salmanzadeh, M.Mehrani, M.R.Isvandzibaei

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
750 Use of Vegetation and Geo-Jute in Erosion Control of Slopes in a Sub-Tropical Climate

Authors: Mohammad Shariful Islam, Shamima Nasrin, Md. Shahidul Islam, Farzana Rahman Moury

Abstract:

Protection of slope and embankment from erosion has become an important issue in Bangladesh. The constructions of strong structures require large capital, integrated designing, high maintenance cost. Strong structure methods have negative impact on the environment and sometimes not function for the design period. Plantation of vetiver system along the slopes is an alternative solution. Vetiver not only serves the purpose of slope protection but also adds green environment reducing pollution. Vetiver is available in almost all the districts of Bangladesh. This paper presents the application of vetiver system with geo-jute, for slope protection and erosion control of embankments and slopes. In-situ shear tests have been conducted on vetiver rooted soil system to find the shear strength. The shear strength and effective soil cohesion of vetiver rooted soil matrix are respectively 2.0 times and 2.1 times higher than that of the bared soil. Similar trends have been found in direct shear tests conducted on laboratory reconstituted samples. Field trials have been conducted in road embankment and slope protection with vetiver at different sites. During the time of vetiver root growth the soil protection has been accomplished by geo-jute. As the geo-jute degrades with time, vetiver roots grow and take over the function of geo-jutes. Slope stability analyses showed that vegetation increase the factor of safety significantly.

Keywords: Erosion, geo-jute, green technology, vegetation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4164
749 Fabrication of Al/Cu Clad Sheet by Shear Extrusion

Authors: Joon Ho Kim, Duck Su Kim, Tae Kwon Ha

Abstract:

Aluminum/Copper clad sheet has been fabricated using asymmetric extrusion method, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Interfacial microstructure and mechanical properties of Al/Cu clad were studied by scanning electron microscope equipped with energy dispersive X-ray detector, micro-hardness, and tension tests. The asymmetric extrusion bonding was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing extrusion ratio.

Keywords: Aluminum/Copper clad sheet, Asymmetric extrusion, Interfacial microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
748 A Strategy for a Robust Design of Cracked Stiffened Panels

Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano

Abstract:

This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.

Keywords: Residual strength, R-Curve, Gurson model, SDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
747 Polymer Industrial Floors - The Possibility of Using Secondary Raw Materials from Solar Panels

Authors: J. Kosikova, B. Vacenovska, M. Vyhnankova

Abstract:

The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems.

Keywords: Fillers, industrial floors, recycling, secondary raw material, solar panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
746 Load Transfer Mechanism Based Unified Strut-and-Tie Modeling for Design of Concrete Beams

Authors: Ahmed, M., Yasser A., Mahmoud H., Ahmed, A., Abdulla M. S., Nazar, S.

Abstract:

Strut-and-Tie Models (STM) for the design of concrete beams, comprising of struts, ties, nodes as the basic tools, is conceptually simple, but its realization for complex concrete structure is not straightforward and depends on flow of internal forces in the structure. STM technique has won wide acceptance for deep member and shear design. STM technique is a unified approach that considers all load effects (bending, axial, shear, and torsion) simultaneously, not just applicable to shear loading only. The present study is to portray Strut-and-Tie Modeling based on Load-Transfer-Mechanisms as a unified method to analyze, design and detailing for deep and slender concrete beams. Three shear span- effective depth ratio (a/ d) are recommended for the modeling of STM elements corresponding to dominant load paths. The study also discusses the research work conduct on effective stress of concrete, tie end anchorage, and transverse reinforcement demand under different load transfer mechanism. It is also highlighted that to make the STM versatile tool for design of beams applicable to all shear spans, the effective stress of concrete and, transverse reinforcement demand, inclined angle of strut, and anchorage requirements of tie bars is required to be correlated with respect to load transfer mechanism. The country code provisions are to be modified and updated to apply for generalized design of concrete deep and slender member using load transfer mechanism based STM technique. Examples available in literature are reanalyzed with refined STM based on load transfer mechanisms and results are compared. It is concluded from the results that proposed approach will require true reinforcement demand depending on dominant force transfer action in concrete beam.

Keywords: Deep member, Load transfer mechanism, Strut-and-Tie Model, Strut, Truss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5985
745 Corruption, Economic Growth, and Income Inequality: Evidence from Ten Countries in Asia

Authors: Chiung-Ju Huang

Abstract:

This study utilizes the panel vector error correction model (PVECM) to examine the relationship among corruption, economic growth, and income inequality experienced within ten Asian countries over the 1995 to 2010 period. According to the empirical results, we do not support the common perception that corruption decreases economic growth. On the contrary, we found that corruption increases economic growth. Meanwhile, an increase in economic growth will cause an increase in income inequality, although the effect is insignificant. Similarly, an increase in income inequality will cause an increase in economic growth but a decrease in corruption, although the effect is also insignificant.

Keywords: Corruption, economic growth, income inequality, panel vector error correction model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368
744 How Do Crisis Affect Economic Policy?

Authors: Eva Kotlánová

Abstract:

After recession that began in 2007 in the United States and subsequently spilled over the Europe we could expect recovery of economic growth. According to the last estimation of economic progress of European countries, this recovery is not strong enough. Among others, it will depend on economic policy, where and in which way, the economic indicators will proceed. Economic theories postulate that the economic subjects prefer stably, continual economic policy without repeated and strong fluctuations. This policy is perceived as support of economic growth. Mostly in crises period, when the government must cope with consequences of recession, the economic policy becomes unpredictable for many subjects and economic policy uncertainty grows, which have negative influence on economic growth. The aim of this paper is to use panel regression to prove or disprove this hypothesis on the example of five largest European economies in the period 2008–2012.

Keywords: Economic Crises in Europe, Economic Policy, Uncertainty, Panel Analysis Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
743 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas

Authors: Xia Liu, Marek E. Bialkowski

Abstract:

This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.

Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
742 Vortex Shedding on Combined Bodies at Incidence to a Uniform Air Stream

Authors: T. Yavuz, Y. E. Akansu, M. Sarıoglu, M. Ozmert

Abstract:

Vortex-shedding phenomenon of the flow around combined two bodies having various geometries and sizes has been investigated experimentally in the Reynolds number range between 4.1x103 and 1.75x104. To see the effect of the rotation of the bodies on the vortex shedding, the combined bodies were rotated from 0° to 180°. The combined models have a cross section composing of a main circular cylinder and an attached circular or square cylinder. Results have shown that Strouhal numbers for two cases were changed considerably with the angle of incidence, while it was found to be largely independent of Reynolds number at 150. Characteristics of the vortex formation region and location of flow attachments, reattachments, and separations were observed by means of the flow visualizations. Depending on the inclination angle the effects of flow attachment, separation and reattachment on vortex-shedding phenomenon have been discussed.

Keywords: Bluff body, vortex shedding, flow separation, flow reattachment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
741 A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems

Authors: Md. Noman Habib Khan, S. Khan, T. S. Gunawan, R. I. Boby

Abstract:

The photovoltaic (PV) panel with no galvanic isolation system is well known technique in the world which is effective and delivers power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas when as the resulting power gets connected to electronic load installation instead of being tied to the grid. Though very small, even then transformer-less topology is shown to be with leakage in pico-ampere range. By using PWM technique PWM, leakage current in different situations is shown. The results shown in this paper show how the pico-ampere current is reduced to femto-ampere through use of inductors and capacitors of suitable values of inductor and capacitors with the load.

Keywords: Photovoltaic (PV) panel, Duty cycle, Pulse Duration Modulation (PDM), Leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
740 Effect of a Multiple Stenosis on Blood Flow through a Tube

Authors: Vipin Kumar Verma, Praveen Saraswat

Abstract:

The development of double stenosis in an artery can have serious consequences and can disrupt the normal functioning of the circulatory system. It has been realized that various hydrodynamics effects (i.e. wall shear, pressure distribution etc.) play important role in the development of this disease. Generally in the literature, the cross-section of the artery is assumed to be uniform with a single stenosis. However, in real situation the multiple stenosis develops in series along the length of artery whose cross-section varies slowly. Therefore, the flow of blood is laminar through a small diameter artery with axisymmetric identical double stenosis in series.

Keywords: Wall shear, multiple stenosis, artery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
739 Effects Edge end Free-free Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with Ring based on Third Order Shear Deformation Theory using Hamilton's Principle

Authors: M.R.Isvandzibaei, P.J.Awasare

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
738 New Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer

Authors: Mohammad R. Salimpour, Amir Dehshiri

Abstract:

In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. we check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enchantment than conduit with circular cross section.

Keywords: Nanofluid, cross-sectional shape, TiO2, convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
737 Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog

Authors: Safyeh Soufian, Hoosein Naderi-Manesh, Abdoali Alizadeh, Mohammad Nabi Sarbolouki

Abstract:

Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.

Keywords: Antimicrobial peptides, retro, molecular dynamic, circular dichroism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
736 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
735 Development of Environment Friendly Mimosa Tannin-Cornstarch Based Wood Adhesive

Authors: Salise Oktay, Nilgün Kızılcan, Başak Bengü

Abstract:

At present, formaldehyde-based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine-urea formaldehyde (MUF) etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non-renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood-based panel industry requirements. In this study, as formaldehyde free adhesive, tannin and starch-based wood adhesive was synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate chemical structures of the cured adhesive samples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in laboratory scale and mechanical, physical properties of the boards were investigated. Besides, formaldehyde contents of the boards were determined by using perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use in wood-based panel industry with some developments.

Keywords: Wood adhesive, cornstarch, mimosa tannin, particleboard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414