Search results for: Elliptic Curve Digital Signature Algorithm
1189 Teaching Science Content Area Literacy to 21st Century Learners
Authors: Melissa C. LaDuke
Abstract:
The use of new literacies within science classrooms needs to be balanced by teachers to both teach different forms of communication while assessing content area proficiency. Using new literacies such as Twitter and Facebook needs to be incorporated into science content area literacy studies in addition to continuing to use generally-accepted forms of scientific content area presentation which include scientific papers and textbooks. The research question this literature review seeks to answer is “What are some ways in which new forms of literacy are better suited to teach scientific content area literacy to 21st century learners?” The research question is addressed through a literature review that highlights methods currently being used to educate the next wave of learners in the world of science content area literacy. Both temporal discourse analysis (TDA) and critical discourse analysis (CDA) were used to determine the need to use new literacies to teach science content area literacy. Increased use of digital technologies and a change in science content area pedagogy were explored.
Keywords: Science content area literacy, new literacies, critical discourse analysis, temporal discourse analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4921188 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741187 Cost and Profit Analysis of Markovian Queuing System with Two Priority Classes: A Computational Approach
Authors: S. S. Mishra, D. K. Yadav
Abstract:
This paper focuses on cost and profit analysis of single-server Markovian queuing system with two priority classes. In this paper, functions of total expected cost, revenue and profit of the system are constructed and subjected to optimization with respect to its service rates of lower and higher priority classes. A computing algorithm has been developed on the basis of fast converging numerical method to solve the system of non linear equations formed out of the mathematical analysis. A novel performance measure of cost and profit analysis in view of its economic interpretation for the system with priority classes is attempted to discuss in this paper. On the basis of computed tables observations are also drawn to enlighten the variational-effect of the model on the parameters involved therein.Keywords: Cost and Profit, Computing, Expected Revenue, Priority classes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27231186 Shear-Layer Instabilities of a Pulsed Stack-Issued Transverse Jet
Authors: Ching M. Hsu, Rong F. Huang, Michael E. Loretero
Abstract:
Shear-layer instabilities of a pulsed stack-issued transverse jet were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera. Instantaneous velocities of the shear-layer instabilities in the flow were digitized by a hot-wire anemometer. By analyzing the streak pictures of the smoke-flow visualization, three characteristic flow modes, synchronized flapping jet, transition, and synchronized shear-layer vortices, are identified in the shear layer of the pulsed stack-issued transverse jet at various excitation Strouhal numbers. The shear-layer instabilities of the pulsed stack-issued transverse jet are synchronized by acoustic excitation except for transition mode. In transition flow mode, the shear-layer vortices would exhibit a frequency that would be twice as great as the acoustic excitation frequency.Keywords: Acoustic excitation, jet in crossflow, shear-layer instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17071185 User-Based Cannibalization Mitigation in an Online Marketplace
Authors: Vivian Guo, Yan Qu
Abstract:
Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.
Keywords: Cannibalization, machine learning, online marketplace, revenue optimization, yield optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9131184 Sprayer Boom Active Suspension Using Intelligent Active Force Control
Authors: M. Tahmasebi, R.A. Rahman, M. Mailah, M. Gohari
Abstract:
The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.
Keywords: Active force control, sprayer boom, active suspension, iterative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23101183 Smart Surveillance using PDA
Authors: Basem Mustafa Abd. Amer , Syed Abdul Rahman Al-Attas
Abstract:
The aim of this research is to develop a fast and reliable surveillance system based on a personal digital assistant (PDA) device. This is to extend the capability of the device to detect moving objects which is already available in personal computers. Secondly, to compare the performance between Background subtraction (BS) and Temporal Frame Differencing (TFD) techniques for PDA platform as to which is more suitable. In order to reduce noise and to prepare frames for the moving object detection part, each frame is first converted to a gray-scale representation and then smoothed using a Gaussian low pass filter. Two moving object detection schemes i.e., BS and TFD have been analyzed. The background frame is updated by using Infinite Impulse Response (IIR) filter so that the background frame is adapted to the varying illuminate conditions and geometry settings. In order to reduce the effect of noise pixels resulting from frame differencing morphological filters erosion and dilation are applied. In this research, it has been found that TFD technique is more suitable for motion detection purpose than the BS in term of speed. On average TFD is approximately 170 ms faster than the BS techniqueKeywords: Surveillance, PDA, Motion Detection, ImageProcessing , Background Subtraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17661182 Analysis of Genotype Size for an Evolvable Hardware System
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
The evolution of logic circuits, which falls under the heading of evolvable hardware, is carried out by evolutionary algorithms. These algorithms are able to automatically configure reconfigurable devices. One of main difficulties in developing evolvable hardware with the ability to design functional electrical circuits is to choose the most favourable EA features such as fitness function, chromosome representations, population size, genetic operators and individual selection. Until now several researchers from the evolvable hardware community have used and tuned these parameters and various rules on how to select the value of a particular parameter have been proposed. However, to date, no one has presented a study regarding the size of the chromosome representation (circuit layout) to be used as a platform for the evolution in order to increase the evolvability, reduce the number of generations and optimize the digital logic circuits through reducing the number of logic gates. In this paper this topic has been thoroughly investigated and the optimal parameters for these EA features have been proposed. The evolution of logic circuits has been carried out by an extrinsic evolvable hardware system which uses (1+λ) evolution strategy as the core of the evolution.
Keywords: Evolvable hardware, genotype size, computational intelligence, design of logic circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671181 Action Functional of the Electomagnetic Field: Effect of Gravitation
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
The scalar wave equation for a potential in a curved space time, i.e., the Laplace-Beltrami equation has been studied in this work. An action principle is used to derive a finite element algorithm for determining the modes of propagation inside a waveguide of arbitrary shape. Generalizing this idea, the Maxwell theory in a curved space time determines a set of linear partial differential equations for the four electromagnetic potentials given by the metric of space-time. Similar to the Einstein-s formulation of the field equations of gravitation, these equations are also derived from an action principle. In this paper, the expressions for the action functional of the electromagnetic field have been derived in the presence of gravitational field.
Keywords: General theory of relativity, electromagnetism, metric tensor, Maxwells equations, test functions, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691180 Application of Remote Sensing in Development of Green Space
Authors: Mehdi Saati, Mohammad Bagheri, Fatemeh Zamanian
Abstract:
One of the most important parameters to develop and manage urban areas is appropriate selection of land surface to develop green spaces in these areas. In this study, in order to identify the most appropriate sites and areas cultivated for ornamental species in Jiroft, Landsat Enhanced Thematic Mapper Plus (ETM+) images due to extract the most important effective climatic and adaphic parameters for growth ornamental species were used. After geometric and atmospheric corrections applied, to enhance accuracy of multi spectral (XS) bands, the fusion of Landsat XS bands by IRS-1D panchromatic band (PAN) was performed. After field sampling to evaluate the correlation between different factors in surface soil sampling location and different bands digital number (DN) of ETM+ sensor on the same points, correlation tables formed using the best computational model and the map of physical and chemical parameters of soil was produced. Then the accuracy of them was investigated by using kappa coefficient. Finally, according to produced maps, the best areas for cultivation of recommended species were introduced.Keywords: Locate ornamental species, Remote Sensing, Adaphic parameters, ETM+, Jiroft
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771179 Dynamic Data Partition Algorithm for a Parallel H.264 Encoder
Authors: Juntae Kim, Jaeyoung Park, Kyoungkun Lee, Jong Tae Kim
Abstract:
The H.264/AVC standard is a highly efficient video codec providing high-quality videos at low bit-rates. As employing advanced techniques, the computational complexity has been increased. The complexity brings about the major problem in the implementation of a real-time encoder and decoder. Parallelism is the one of approaches which can be implemented by multi-core system. We analyze macroblock-level parallelism which ensures the same bit rate with high concurrency of processors. In order to reduce the encoding time, dynamic data partition based on macroblock region is proposed. The data partition has the advantages in load balancing and data communication overhead. Using the data partition, the encoder obtains more than 3.59x speed-up on a four-processor system. This work can be applied to other multimedia processing applications.Keywords: H.264/AVC, video coding, thread-level parallelism, OpenMP, multimedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071178 Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations
Authors: Lai Lai Win Kyi, Nay Min Tun
Abstract:
Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.
Keywords: Cluster of Workstations, Parallel sorting algorithms, performance analysis, parallel computing and MPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931177 Optimal Policy for a Deteriorating Inventory Model with Finite Replenishment Rate and with Price Dependant Demand Rate and Cycle Length Dependant Price
Authors: Hamed Sabahno
Abstract:
In this paper, an inventory model with finite and constant replenishment rate, price dependant demand rate, time value of money and inflation, finite time horizon, lead time and exponential deterioration rate and with the objective of maximizing the present worth of the total system profit is developed. Using a dynamic programming based solution algorithm, the optimal sequence of the cycles can be found and also different optimal selling prices, optimal order quantities and optimal maximum inventories can be obtained for the cycles with unequal lengths, which have never been done before for this model. Also, a numerical example is used to show accuracy of the solution procedure.Keywords: Deteriorating items, Dynamic programming, Finitereplenishment rate, Inventory control, Operation Research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101176 Using Pattern Search Methods for Minimizing Clustering Problems
Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar
Abstract:
Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491175 Solar Cell Parameters Estimation Using Simulated Annealing Algorithm
Authors: M. R. AlRashidi, K. M. El-Naggar, M. F. AlHajri
Abstract:
This paper presents Simulated Annealing based approach to estimate solar cell model parameters. Single diode solar cell model is used in this study to validate the proposed approach outcomes. The developed technique is used to estimate different model parameters such as generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor that govern the current-voltage relationship of a solar cell. A practical case study is used to test and verify the consistency of accurately estimating various parameters of single diode solar cell model. Comparative study among different parameter estimation techniques is presented to show the effectiveness of the developed approach.Keywords: Simulated Annealing, Parameter Estimation, Solar Cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25671174 Mathematical Model and Solution Algorithm for Containership Operation/Maintenance Scheduling
Authors: Hun Go, Ji-Su Kim, Dong-Ho Lee
Abstract:
This study considers the problem of determining operation and maintenance schedules for a containership equipped with components during its sailing according to a pre-determined navigation schedule. The operation schedule, which specifies work time of each component, determines the due-date of each maintenance activity, and the maintenance schedule specifies the actual start time of each maintenance activity. The main constraints are component requirements, workforce availability, working time limitation, and inter-maintenance time. To represent the problem mathematically, a mixed integer programming model is developed. Then, due to the problem complexity, we suggest a heuristic for the objective of minimizing the sum of earliness and tardiness between the due-date and the starting time of each maintenance activity. Computational experiments were done on various test instances and the results are reported.Keywords: Containerships, operation and preventive maintenance schedules, integer programming, heuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251173 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16011172 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles Using Enhanced Collaborative Optimization
Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre
Abstract:
The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.
Keywords: Multidisciplinary, Multilevel, Morphing, Enhanced Collaborative Optimization (ECO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25011171 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.
Keywords: Factorization machines, feature engineering, negative ratings, recommendation systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9521170 A Planning Model for Evacuation in Building
Authors: Hsin-Yun Lee, Hao-Hsi Tseng
Abstract:
Previous studies mass evacuation route network does not fully reflect the step-by-step behavior and evacuees make routing decisions. Therefore, they do not work as expected when applied to the evacuation route planning is valid. This article describes where evacuees may have to make a direction to select all areas were identified as guiding points to improve evacuation routes network. This improved route network can be used as a basis for the layout can be used to guide the signs indicate that provides the required evacuation direction. This article also describes that combines simulation and artificial bee colony algorithm to provide the proposed routing solutions, to plan an integrated routing mode. The improved network and the model used is the cinema as a case study to assess the floor. The effectiveness of guidance solution in the total evacuation time is significant by verification.
Keywords: Artificial bee colony, Evacuation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25031169 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures
Authors: Do Phuc, Nguyen Thi Kim Phung
Abstract:
In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.Keywords: Eigenvalues, m-tree, graph database, protein structure, spectra graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621168 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System
Authors: Shahram Mohammadi, Ali Frajzadeh
Abstract:
A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.
Keywords: Matching, Minutiae, Reference point, Reference orientation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24211167 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network
Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna
Abstract:
This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.
Keywords: Optimization, distributed generation, integration, slime mould algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6631166 Improved Wavelet Neural Networks for Early Cancer Diagnosis Using Clustering Algorithms
Authors: Zarita Zainuddin, Ong Pauline
Abstract:
Wavelet neural networks (WNNs) have emerged as a vital alternative to the vastly studied multilayer perceptrons (MLPs) since its first implementation. In this paper, we applied various clustering algorithms, namely, K-means (KM), Fuzzy C-means (FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy C-means (SBFCM) and modified point symmetry-based K-means (MPKM) clustering algorithms in choosing the translation parameter of a WNN. These modified WNNs are further applied to the heterogeneous cancer classification using benchmark microarray data and were compared against the conventional WNN with random initialization method. Experimental results showed that a WNN classifier with the MPKM algorithm is more precise than the conventional WNN as well as the WNNs with other clustering algorithms.
Keywords: Clustering, microarray, symmetry, wavelet neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261165 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search
Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur
Abstract:
Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.Keywords: Process planning, scheduling, due-date assignment, genetic algorithm, random search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451164 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design
Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai
Abstract:
Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.Keywords: Knowledge based engineering, biologically inspired design, knowledge cell, knowledge clustering, knowledge acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10251163 Grid-HPA: Predicting Resource Requirements of a Job in the Grid Computing Environment
Authors: M. Bohlouli, M. Analoui
Abstract:
For complete support of Quality of Service, it is better that environment itself predicts resource requirements of a job by using special methods in the Grid computing. The exact and correct prediction causes exact matching of required resources with available resources. After the execution of each job, the used resources will be saved in the active database named "History". At first some of the attributes will be exploit from the main job and according to a defined similarity algorithm the most similar executed job will be exploited from "History" using statistic terms such as linear regression or average, resource requirements will be predicted. The new idea in this research is based on active database and centralized history maintenance. Implementation and testing of the proposed architecture results in accuracy percentage of 96.68% to predict CPU usage of jobs and 91.29% of memory usage and 89.80% of the band width usage.
Keywords: Active Database, Grid Computing, ResourceRequirement Prediction, Scheduling,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14381162 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14741161 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.
Keywords: Advanced Persistent Threat, Malware, Network Security, Network Packet, Exploit Kits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761160 Computationally Efficient Signal Quality Improvement Method for VoIP System
Authors: H. P. Singh, S. Singh
Abstract:
The voice signal in Voice over Internet protocol (VoIP) system is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss jitter. The work in this paper presents the implementation of finite impulse response (FIR) filter for voice quality improvement in the VoIP system through distributed arithmetic (DA) algorithm. The VoIP simulations are conducted with AMR-NB 6.70 kbps and G.729a speech coders at different packet loss rates and the performance of the enhanced VoIP signal is evaluated using the perceptual evaluation of speech quality (PESQ) measurement for narrowband signal. The results show reduction in the computational complexity in the system and significant improvement in the quality of the VoIP voice signal.
Keywords: VoIP, Signal Quality, Distributed Arithmetic, Packet Loss, Speech Coder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839