Search results for: External sorting algorithm
698 Identification of Factors Influencing Company's Competitiveness
Authors: D. Ščeulovs, E. Gaile-Sarkane
Abstract:
Fast development of technologies, economic globalization and many other external circumstances stimulate company’s competitiveness. One of the major trends in today’s business is the shift to the exploitation of the Internet and electronic environment for entrepreneurial needs. Latest researches confirm that e-environment provides a range of possibilities and opportunities for companies, especially for micro-, small- and medium-sized companies, which have limited resources. The usage of e-tools raises the effectiveness and the profitability of an organization, as well as its competitiveness. In the electronic market, as in the classic one, there are factors, such as globalization, development of new technology, price sensitive consumers, Internet, new distribution and communication channels that influence entrepreneurship. As a result of eenvironment development, e-commerce and e-marketing grow as well.
Objective of the paper: To describe and identify factors influencing company’s competitiveness in e-environment.
Research methodology: The authors employ well-established quantitative and qualitative methods of research: grouping, analysis, statistics method, factor analysis in SPSS 20 environment, etc. The theoretical and methodological background of the research is formed by using scientific researches and publications, such as that from mass media and professional literature; statistical information from legal institutions as well as information collected by the authors during the surveying process. Research result: The authors detected and classified factors influencing competitiveness in e-environment.
In this paper, the authors presented their findings based on theoretical, scientific, and field research. Authors have conducted a research on e-environment utilization among Latvian enterprises.
Keywords: Competitiveness, e-environment, factors, factor analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096697 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498696 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System
Authors: Soltani Amir, Wang Xuan
Abstract:
The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A MATLAB program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.
Keywords: Structural Control, Active and passive damping, Vibration control, Seismic isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408695 An Exploration of Cross-Cultural Behaviour: The Characteristics of Chinese Consumers’ Decision Making in Europe
Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu
Abstract:
This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted 24 in-depth interviews. Grounded theory models are developed to link the causal conditions, process, and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.
Keywords: National culture, consumer behaviour, cultural marketing, decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478694 Bottom Up Text Mining through Hierarchical Document Representation
Authors: Y. Djouadi., F. Souam.
Abstract:
Most of the existing text mining approaches are proposed, keeping in mind, transaction databases model. Thus, the mined dataset is structured using just one concept: the “transaction", whereas the whole dataset is modeled using the “set" abstract type. In such cases, the structure of the whole dataset and the relationships among the transactions themselves are not modeled and consequently, not considered in the mining process. We believe that taking into account structure properties of hierarchically structured information (e.g. textual document, etc ...) in the mining process, can leads to best results. For this purpose, an hierarchical associations rule mining approach for textual documents is proposed in this paper and the classical set-oriented mining approach is reconsidered profits to a Direct Acyclic Graph (DAG) oriented approach. Natural languages processing techniques are used in order to obtain the DAG structure. Based on this graph model, an hierarchical bottom up algorithm is proposed. The main idea is that each node is mined with its parent node.Keywords: Graph based association rules mining, Hierarchical document structure, Text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058693 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements
Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono
Abstract:
The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.
Keywords: Hip joint centre, motion capture, soft tissue artefact, ultrasound depth measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861692 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560691 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy
Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise
Abstract:
The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.
Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728690 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata
Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi
Abstract:
Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.
Keywords: Resource discovery, learning automata, neural network, economic policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453689 Power Management Strategy for Solar-Wind-Diesel Stand-alone Hybrid Energy System
Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim
Abstract:
This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.
Keywords: Solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4712688 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization
Authors: Mohammad Taha, Dia abu al Nadi
Abstract:
In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927687 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition
Authors: C. Ganesh Babu, P. T. Vanathi
Abstract:
In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.
Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703686 Automated Fact-Checking By Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state of the art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study presents a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive and authoritative data; 2) developing a search function to automatically select relevant, new and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that: 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graph in Wikidata to dynamically augment the representations of claims and references without introducing too much noises; II) exploring semantic relations in claims and references to further enhance fact-checking.
Keywords: Fact checking, claim verification, Deep Learning, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81685 Wavelet based ANN Approach for Transformer Protection
Authors: Okan Özgönenel
Abstract:
This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.Keywords: Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845684 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem
Authors: Yu T. Tsai, Jin H. Huang
Abstract:
In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.Keywords: Sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973683 A New Self-Adaptive EP Approach for ANN Weights Training
Authors: Kristina Davoian, Wolfram-M. Lippe
Abstract:
Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828682 Currency Boards in Crisis: Experience of Baltic Countries
Authors: Gordana Kordić, Petra Palić
Abstract:
The European countries that during the past two decades based their exchange rate regimes on currency board arrangement (CBA) are usually analysed from the perspective of corner solution choice’s stabilisation effects. There is an open discussion on the positive and negative background of a strict exchange rate regime choice, although it should be seen as part of the transition process towards the monetary union membership. The focus of the paper is on the Baltic countries that after two decades of a rigid exchange rate arrangement and strongly influenced by global crisis are finishing their path towards the euro zone. Besides the stabilising capacity, the CBA is highly vulnerable regime, with limited developing potential. The rigidity of the exchange rate (and monetary) system, despite the ensured credibility, do not leave enough (or any) space for the adjustment and/or active crisis management. Still, the Baltics are in a process of recovery, with fiscal consolidation measures combined with (painful and politically unpopular) measures of internal devaluation. Today, two of them (Estonia and Latvia) are members of euro zone, fulfilling their ultimate transition targets, but de facto exchanging one fixed regime with another. The paper analyses the challenges for the CBA in unstable environment since the fixed regimes rely on imported stability and are sensitive to external shocks. With limited monetary instruments, these countries were oriented to the fiscal policies and used a combination of internal devaluation and tax policy measures. Despite their rather quick recovery, our second goal is to analyse the long term influence that the measures had on the national economy.
Keywords: Currency Board Arrangement, internal devaluation, exchange rate regime, Great recession.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047681 The Splitting Upwind Schemes for Spectral Action Balance Equation
Authors: Anirut Luadsong, Nitima Aschariyaphotha
Abstract:
The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.Keywords: upwind scheme, parallel algorithm, spectral action balance equation, splitting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687680 A Comparison and Analysis of Name Matching Algorithms
Authors: Chakkrit Snae
Abstract:
Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching.Keywords: Data mining, name matching algorithm, nominaldata, searching system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11090679 Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing
Authors: Marc C. Robini, Pierre-Jean Viverge, Yuemin Zhu, Jianhua Luo
Abstract:
The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344678 Artificial Neural Network Development by means of Genetic Programming with Graph Codification
Authors: Daniel Rivero, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos, Javier Pereira
Abstract:
The development of Artificial Neural Networks (ANNs) is usually a slow process in which the human expert has to test several architectures until he finds the one that achieves best results to solve a certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically generating ANNs. To do this, the GP algorithm had to be changed in order to work with graph structures, so ANNs can be developed. This technique also allows the obtaining of simplified networks that solve the problem with a small group of neurons. In order to measure the performance of the system and to compare the results with other ANN development methods by means of Evolutionary Computation (EC) techniques, several tests were performed with problems based on some of the most used test databases. The results of those comparisons show that the system achieves good results comparable with the already existing techniques and, in most of the cases, they worked better than those techniques.Keywords: Artificial Neural Networks, Evolutionary Computation, Genetic Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461677 W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees
Authors: R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, M. Rahgozar
Abstract:
Mining frequent tree patterns have many useful applications in XML mining, bioinformatics, network routing, etc. Most of the frequent subtree mining algorithms (i.e. FREQT, TreeMiner and CMTreeMiner) use anti-monotone property in the phase of candidate subtree generation. However, none of these algorithms have verified the correctness of this property in tree structured data. In this research it is shown that anti-monotonicity does not generally hold, when using weighed support in tree pattern discovery. As a result, tree mining algorithms that are based on this property would probably miss some of the valid frequent subtree patterns in a collection of trees. In this paper, we investigate the correctness of anti-monotone property for the problem of weighted frequent subtree mining. In addition we propose W3-Miner, a new algorithm for full extraction of frequent subtrees. The experimental results confirm that W3-Miner finds some frequent subtrees that the previously proposed algorithms are not able to discover.Keywords: Semi-Structured Data Mining, Anti-Monotone Property, Trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381676 Identification of Aircraft Gas Turbine Engines Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660675 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling
Authors: Adesoji T. Jaiyeola, Josiah Adeyemo
Abstract:
This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861674 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance
Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat
Abstract:
Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832673 Motivating Factors and Prospects for Rural Community Involvement in Entrepreneurship: Evidence from Mantanani Island, Sabah, Malaysia
Authors: F. Fabeil Noor, Roslinah Mahmud, Janice L. H. Nga, Rasid Mail
Abstract:
In Malaysia, particularly in Sabah, the government has been promoting entrepreneurship among rural people to encourage them to earn their living by making good use of the diverse natural resources and local cultures of Sabah. Nevertheless, despite the government’s aim to encourage more local community in rural area to involve in entrepreneurship, the involvement of community in entrepreneurial activity is still low. It is crucial to identify the factors stimulate (or prevent) the involvement of rural community in Sabah in entrepreneurial activity. Therefore, this study tries to investigate the personal and contextual factors that may have impact on decision to start a business among the local community in Mantanani Island. In addition, this study also aims to identify the perceived benefits they receive from entrepreneurial activity. A structured face-to-face interview was conducted with 61 local communities in Mantanani Island. Data analysis revealed that passion, personal skills and self-confidence are the significant internal factors to entrepreneurial activity, whereas access to finance, labour and infrastructure are the significant external factors that are found to influence entrepreneurship. In terms of perceived rewards they received from taking up small business, it was found that respondents are predominantly agreed that entrepreneurship offers financial benefit than non-financial. In addition, this study also offers several suggestions for entrepreneurship development in Mantanani Island and it is hoped that this study may help the related agency to develop effective support policies in order to encourage more people in rural area to involve in entrepreneurship.
Keywords: Entrepreneurship, motivation, perceived rewards, rural community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273672 Generating Speq Rules based on Automatic Proof of Logical Equivalence
Authors: Katsunori Miura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
In the Equivalent Transformation (ET) computation model, a program is constructed by the successive accumulation of ET rules. A method by meta-computation by which a correct ET rule is generated has been proposed. Although the method covers a broad range in the generation of ET rules, all important ET rules are not necessarily generated. Generation of more ET rules can be achieved by supplementing generation methods which are specialized for important ET rules. A Specialization-by-Equation (Speq) rule is one of those important rules. A Speq rule describes a procedure in which two variables included in an atom conjunction are equalized due to predicate constraints. In this paper, we propose an algorithm that systematically and recursively generate Speq rules and discuss its effectiveness in the synthesis of ET programs. A Speq rule is generated based on proof of a logical formula consisting of given atom set and dis-equality. The proof is carried out by utilizing some ET rules and the ultimately obtained rules in generating Speq rules.Keywords: Equivalent transformation, ET rule, Equation of two variables, Rule generation, Specialization-by-Equation rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290671 Unit Selection Algorithm Using Bi-grams Model For Corpus-Based Speech Synthesis
Authors: Mohamed Ali KAMMOUN, Ahmed Ben HAMIDA
Abstract:
In this paper, we present a novel statistical approach to corpus-based speech synthesis. Classically, phonetic information is defined and considered as acoustic reference to be respected. In this way, many studies were elaborated for acoustical unit classification. This type of classification allows separating units according to their symbolic characteristics. Indeed, target cost and concatenation cost were classically defined for unit selection. In Corpus-Based Speech Synthesis System, when using large text corpora, cost functions were limited to a juxtaposition of symbolic criteria and the acoustic information of units is not exploited in the definition of the target cost. In this manuscript, we token in our consideration the unit phonetic information corresponding to acoustic information. This would be realized by defining a probabilistic linguistic Bi-grams model basically used for unit selection. The selected units would be extracted from the English TIMIT corpora.Keywords: Unit selection, Corpus-based Speech Synthesis, Bigram model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441670 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading
Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki
Abstract:
Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.
Keywords: Finite element approach, hybrid girder, headed stud shear connections, sustained loading, time dependent shear behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629669 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.
Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175