Search results for: Great Deluge Algorithm.
934 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance
Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat
Abstract:
Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833933 Generating Speq Rules based on Automatic Proof of Logical Equivalence
Authors: Katsunori Miura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
In the Equivalent Transformation (ET) computation model, a program is constructed by the successive accumulation of ET rules. A method by meta-computation by which a correct ET rule is generated has been proposed. Although the method covers a broad range in the generation of ET rules, all important ET rules are not necessarily generated. Generation of more ET rules can be achieved by supplementing generation methods which are specialized for important ET rules. A Specialization-by-Equation (Speq) rule is one of those important rules. A Speq rule describes a procedure in which two variables included in an atom conjunction are equalized due to predicate constraints. In this paper, we propose an algorithm that systematically and recursively generate Speq rules and discuss its effectiveness in the synthesis of ET programs. A Speq rule is generated based on proof of a logical formula consisting of given atom set and dis-equality. The proof is carried out by utilizing some ET rules and the ultimately obtained rules in generating Speq rules.Keywords: Equivalent transformation, ET rule, Equation of two variables, Rule generation, Specialization-by-Equation rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292932 Unit Selection Algorithm Using Bi-grams Model For Corpus-Based Speech Synthesis
Authors: Mohamed Ali KAMMOUN, Ahmed Ben HAMIDA
Abstract:
In this paper, we present a novel statistical approach to corpus-based speech synthesis. Classically, phonetic information is defined and considered as acoustic reference to be respected. In this way, many studies were elaborated for acoustical unit classification. This type of classification allows separating units according to their symbolic characteristics. Indeed, target cost and concatenation cost were classically defined for unit selection. In Corpus-Based Speech Synthesis System, when using large text corpora, cost functions were limited to a juxtaposition of symbolic criteria and the acoustic information of units is not exploited in the definition of the target cost. In this manuscript, we token in our consideration the unit phonetic information corresponding to acoustic information. This would be realized by defining a probabilistic linguistic Bi-grams model basically used for unit selection. The selected units would be extracted from the English TIMIT corpora.Keywords: Unit selection, Corpus-based Speech Synthesis, Bigram model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442931 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.
Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176930 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673929 Passive Flow Control in Twin Air-Intakes
Authors: Akshoy R. Paul, Pritanshu Ranjan, Ravi R. Upadhyay, Anuj Jain
Abstract:
Aircraft propulsion systems often use Y-shaped subsonic diffusing ducts as twin air-intakes to supply the ambient air into the engine compressor for thrust generation. Due to space constraint, the diffusers need to be curved, which causes severe flow non-uniformity at the engine face. The present study attempt to control flow in a mild-curved Y-duct diffuser using trapezoidalshaped vortex generators (VG) attached on either both the sidewalls or top and bottom walls of the diffuser at the inflexion plane. A commercial computational fluid dynamics (CFD) code is modified and is used to simulate the effects of SVG in flow of a Y-duct diffuser. A few experiments are conducted for CFD code validation, while the rest are done computationally. The best combination of Yduct diffuser is found with VG-2 arranged in co-rotating sequence and attached to both the sidewalls, which ensures highest static pressure recovery, lowest total pressure loss, minimum flow distortion and less flow separation in Y-duct diffuser. The decrease in VG height while attached to top and bottom walls further improves axial flow uniformity at the diffuser outlet by a great margin as compared to the bare duct.Keywords: Twin air-intake, Vortex generator (VG), Turbulence model, Pressure recovery, Distortion coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132928 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor
Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park
Abstract:
In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.
Keywords: Gas sensor, leak, detector, accuracy, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402927 Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View
Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch
Abstract:
The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.
Keywords: Additive manufacturing, fiber-reinforced plastics, hybrid design, lightweight design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222926 Advanced Robust PDC Fuzzy Control of Nonlinear Systems
Authors: M. Polanský
Abstract:
This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.
Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576925 Economic Evaluation of Bowland Shale Gas Wells Development in the UK
Authors: Elijah Acquah-Andoh
Abstract:
The UK has had its fair share of the shale gas revolutionary waves blowing across the global oil and gas industry at present. Although, its exploitation is widely agreed to have been delayed, shale gas was looked upon favorably by the UK Parliament when they recognized it as genuine energy source and granted licenses to industry to search and extract the resource. This, although a significant progress by industry, there yet remains another test the UK fracking resource must pass in order to render shale gas extraction feasible – it must be economically extractible and sustainably so. Developing unconventional resources is much more expensive and risky, and for shale gas wells, producing in commercial volumes is conditional upon drilling horizontal wells and hydraulic fracturing, techniques which increase CAPEX. Meanwhile, investment in shale gas development projects is sensitive to gas price and technical and geological risks. Using a Two-Factor Model, the economics of the Bowland shale wells were analyzed and the operational conditions under which fracking is profitable in the UK was characterized. We find that there is a great degree of flexibility about Opex spending; hence Opex does not pose much threat to the fracking industry in the UK. However, we discover Bowland shale gas wells fail to add value at gas price of $8/ Mmbtu. A minimum gas price of $12/Mmbtu at Opex of no more than $2/ Mcf and no more than $14.95M Capex are required to create value within the present petroleum tax regime, in the UK fracking industry.Keywords: Capex, economical, investment, profitability, shale gas development, sustainable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720924 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics
Authors: N. B. Mahesh Kumar, K. Premalatha
Abstract:
The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.
Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759923 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977922 Design and Testing of Nanotechnology Based Sequential Circuits Using MX-CQCA Logic in VHDL
Authors: K. Maria Agnes, J. Joshua Bapu
Abstract:
This paper impart the design and testing of Nanotechnology based sequential circuits using multiplexer conservative QCA (MX-CQCA) logic gates, which is easily testable using only two vectors. This method has great prospective in the design of sequential circuits based on reversible conservative logic gates and also smashes the sequential circuits implemented in traditional gates in terms of testability. Reversible circuits are similar to usual logic circuits except that they are built from reversible gates. Designs of multiplexer conservative QCA logic based two vectors testable double edge triggered (DET) sequential circuits in VHDL language are also accessible here; it will also diminish intricacy in testing side. Also other types of sequential circuits such as D, SR, JK latches are designed using this MX-CQCA logic gate. The objective behind the proposed design methodologies is to amalgamate arithmetic and logic functional units optimizing key metrics such as garbage outputs, delay, area and power. The projected MX-CQCA gate outshines other reversible gates in terms of the intricacy, delay.
Keywords: Conservative logic, Double edge triggered (DET) flip flop, majority voters, MX-CQCA gate, reversible logic, Quantum dot Cellular automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292921 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932920 Sustainable Maintenance Model for Infrastructure in Egypt
Authors: S. Hasan, I. Beshara
Abstract:
Infrastructure maintenance is a great challenge facing sustainable development of infrastructure assets due to the high cost of passive implementation of a sustainable maintenance plan. An assessment model of sustainable maintenance for highway infrastructure projects in Egypt is developed in this paper. It helps in improving the implementation of sustainable maintenance criteria. Thus, this paper has applied the analytical hierarchy processes (AHP) to rank and explore the weight of 26 assessment indicators using three hierarchy levels containing the main sustainable categories and subcategories with related indicators. Overall combined weight of each indicator for sustainable maintenance evaluation has been calculated to sum up to a sustainable maintenance performance index (SMI). The results show that the factor "Preventive maintenance cost" has the highest relative contribution factor among others (13.5%), while two factors of environmental performance have the least weights (0.7%). The developed model aims to provide decision makers with information about current maintenance performance and support them in the decision-making process regarding future directions of maintenance activities. It can be used as an assessment performance tool during the operation and maintenance stage. The developed indicators can be considered during designing the maintenance plan. Practices for successful implementation of the model are also presented.
Keywords: Analytical Hierarchy Process, AHP, assessment performance model, KPIs for sustainable maintenance, sustainable maintenance index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591919 A Business Model Design Process for Social Enterprises: The Critical Role of the Environment
Authors: Hadia Abdel Aziz, Raghda El Ebrashi
Abstract:
Business models are shaped by their design space or the environment they are designed to be implemented in. The rapidly changing economic, technological, political, regulatory and market external environment severely affects business logic. This is particularly true for social enterprises whose core mission is to transform their environments, and thus, their whole business logic revolves around the interchange between the enterprise and the environment. The context in which social business operates imposes different business design constraints while at the same time, open up new design opportunities. It is also affected to a great extent by the impact that successful enterprises generate; a continuous loop of interaction that needs to be managed through a dynamic capability in order to generate a lasting powerful impact. This conceptual research synthesizes and analyzes literature on social enterprise, social enterprise business models, business model innovation, business model design, and the open system view theory to propose a new business model design process for social enterprises that takes into account the critical role of environmental factors. This process would help the social enterprise develop a dynamic capability that ensures the alignment of its business model to its environmental context, thus, maximizing its probability of success.
Keywords: Social enterprise, business model, business model design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3032918 Secure Block-Based Video Authentication with Localization and Self-Recovery
Authors: Ammar M. Hassan, Ayoub Al-Hamadi, Yassin M. Y. Hasan, Mohamed A. A. Wahab, Bernd Michaelis
Abstract:
Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.Keywords: Authentication, hash function, multiple descriptioncoding, public key encryption, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941917 Genetic Content-Based MP3 Audio Watermarking in MDCT Domain
Authors: N. Moghadam, H. Sadeghi
Abstract:
In this paper a novel scheme for watermarking digital audio during its compression to MPEG-1 Layer III format is proposed. For this purpose we slightly modify some of the selected MDCT coefficients, which are used during MPEG audio compression procedure. Due to the possibility of modifying different MDCT coefficients, there will be different choices for embedding the watermark into audio data, considering robustness and transparency factors. Our proposed method uses a genetic algorithm to select the best coefficients to embed the watermark. This genetic selection is done according to the parameters that are extracted from the perceptual content of the audio to optimize the robustness and transparency of the watermark. On the other hand the watermark security is increased due to the random nature of the genetic selection. The information of the selected MDCT coefficients that carry the watermark bits, are saves in a database for future extraction of the watermark. The proposed method is suitable for online MP3 stores to pursue illegal copies of musical artworks. Experimental results show that the detection ratio of the watermarks at the bitrate of 128kbps remains above 90% while the inaudibility of the watermark is preserved.Keywords: Content-Based Audio Watermarking, Genetic AudioWatermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517916 Effect of Geographical Co-Ordinates on the Parameters in the Rain Rate Model for Radio Propagation Applications
Authors: Olatinwo M. O., Oyeleke Olaosebikan, David Henry O.
Abstract:
Rain attenuation plays a lot of roles in the design of satellite and terrestrial microwave radio links, hence a good knowledge of its effect is of great interest to Engineers and scientists in that it is often required to give a high level of accuracy of the rainrate distribution that expresses rainrate from the lowest value to the highest. This study proposes a model to express rainrate parameters alpha (α) and beta (β) as a function of geographical location at 0.01% of the time. The tropical locations used in the development of the effect were Ilorin, Ile-Ife, Douala, Dar-es-Selam, Nairobi, Lusaka, and Brazilia.
This expression clearly confirms the variability of rainfall from place to place. When consistency test was carried out using the expression to generate rainrate for each location examined, the result obtained was reliable for rain intensities between 5mm/h and 200mm/h. The variability of α and β with latitude also shows that different latitudes have different cumulative rain distribution. The model proposed in this study would be one of the useful tools to Radio Engineers since the precipitation effect in the design of satellite and terrestrial microwave radio links is among the factors to consider when designing communication systems.
Keywords: Rain rate, attenuation, geographical location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714915 Landslide, Earthquake and Flood Hazard Risks of Izmir Metropolitan City, A Case: Altindag Landslide Areas
Authors: Ahmet Kivanc Kutluca, Semahat Ozdemir
Abstract:
Urban disaster risks and vulnerabilities are great problems for Turkey. The annual loss of life and property through disaster in the world-s major metropolitan areas is increasing. Urban concentrations of the poor and less-informed in environmentally fragile locations suffer the impact of disaster disproportionately. Gecekondu (squatter) developments will compound the inherent risks associated with high-density environments, in appropriate technologies, and inadequate infrastructure. On the other hand, there are many geological disadvantages such as sitting on top of active tectonic plate boundaries, and why having avalanche, flood, and landslide and drought prone areas in Turkey. However, this natural formation is inevitable; the only way to survive in such a harsh geography is to be aware of importance of these natural events and to take political and physical measures. The main aim of this research is to bring up the magnitude of natural hazard risks in Izmir built-up zone, not being taken into consideration adequately. Because the dimensions of the peril are not taken seriously enough, the natural hazard risks, which are commonly well known, are not considered important or they are being forgotten after some time passes. Within this research, the magnitude of natural hazard risks for Izmir is being presented in the scope of concrete and local researches over Izmir risky areas.
Keywords: Earthquake, Flood, Landslide, Natural Hazard Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108914 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: Forced convection, Square cylinder, nanofluid, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365913 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.
Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714912 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment
Authors: Yang Song, Yifan Guo, Edward F. Gehringer
Abstract:
Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.
Keywords: Peer assessment, peer rating, peer ranking, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117911 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations
Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova
Abstract:
The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.Keywords: Computed tomography, sparse-view reconstruction, L1 −L2 minimization, non-convex, difference of convex functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035910 Flexible, Adaptable and Scaleable Business Rules Management System for Data Validation
Authors: Kashif Kamran, Farooque Azam
Abstract:
The policies governing the business of any organization are well reflected in her business rules. The business rules are implemented by data validation techniques, coded during the software development process. Any change in business policies results in change in the code written for data validation used to enforce the business policies. Implementing the change in business rules without changing the code is the objective of this paper. The proposed approach enables users to create rule sets at run time once the software has been developed. The newly defined rule sets by end users are associated with the data variables for which the validation is required. The proposed approach facilitates the users to define business rules using all the comparison operators and Boolean operators. Multithreading is used to validate the data entered by end user against the business rules applied. The evaluation of the data is performed by a newly created thread using an enhanced form of the RPN (Reverse Polish Notation) algorithm.Keywords: Business Rules, data validation, multithreading, Reverse Polish Notation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271909 Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments
Authors: Mohammad Shams Esfand Abadi, John Hakon Husøy
Abstract:
Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis can be used to evaluate the mean square performance of the Least Mean Square (LMS) algorithm, its normalized version (NLMS), the family of Affine Projection Algorithms (APA), the Recursive Least Squares (RLS), the Data-Reusing LMS (DR-LMS), its normalized version (NDR-LMS), the Block Least Mean Squares (BLMS), the Block Normalized LMS (BNLMS), the Transform Domain Adaptive Filters (TDAF) and the Subband Adaptive Filters (SAF) in nonstationary environment. Also, we establish the general expressions for the steady-state excess mean square in this environment for all these adaptive algorithms. Finally, we demonstrate through simulations that these results are useful in predicting the adaptive filter performance.Keywords: Adaptive filter, general framework, energy conservation, mean-square performance, nonstationary environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189908 Estimating the Effect of Fluid in Pressing Process
Authors: A. Movaghar, R. A. Mahdavinejad
Abstract:
To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.
Keywords: Pressing, notch, matrix, flow function, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706907 Efficient Detection Using Sequential Probability Ratio Test in Mobile Cognitive Radio Systems
Authors: Yeon-Jea Cho, Sang-Uk Park, Won-Chul Choi, Dong-Jo Park
Abstract:
This paper proposes a smart design strategy for a sequential detector to reliably detect the primary user-s signal, especially in fast fading environments. We study the computation of the log-likelihood ratio for coping with a fast changing received signal and noise sample variances, which are considered random variables. First, we analyze the detectability of the conventional generalized log-likelihood ratio (GLLR) scheme when considering fast changing statistics of unknown parameters caused by fast fading effects. Secondly, we propose an efficient sensing algorithm for performing the sequential probability ratio test in a robust and efficient manner when the channel statistics are unknown. Finally, the proposed scheme is compared to the conventional method with simulation results with respect to the average number of samples required to reach a detection decision.
Keywords: Cognitive radio, fast fading, sequential detection, spectrum sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745906 A Bayesian Network Reliability Modeling for FlexRay Systems
Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu
Abstract:
The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031905 Knowledge Representation Based On Interval Type-2 CFCM Clustering
Authors: Myung-Won Lee, Keun-Chang Kwak
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.
Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619