Search results for: Building Information Modeling (BIM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6657

Search results for: Building Information Modeling (BIM)

3387 Mathematical Rescheduling Models for Railway Services

Authors: Zuraida Alwadood, Adibah Shuib, Norlida Abd Hamid

Abstract:

This paper presents the review of past studies concerning mathematical models for rescheduling passenger railway services, as part of delay management in the occurrence of railway disruption. Many past mathematical models highlighted were aimed at minimizing the service delays experienced by passengers during service disruptions. Integer programming (IP) and mixed-integer programming (MIP) models are critically discussed, focusing on the model approach, decision variables, sets and parameters. Some of them have been tested on real-life data of railway companies worldwide, while a few have been validated on fictive data. Based on selected literatures on train rescheduling, this paper is able to assist researchers in the model formulation by providing comprehensive analyses towards the model building. These analyses would be able to help in the development of new approaches in rescheduling strategies or perhaps to enhance the existing rescheduling models and make them more powerful or more applicable with shorter computing time.

Keywords: Mathematical modelling, Mixed-integer programming, Railway rescheduling, Service delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251
3386 Modeling Influence on Petty Corruption Attitudes

Authors: Nina Bijedic, Drazena Gaspar, Mirsad Hadzikadic

Abstract:

Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.

Keywords: Agent based model, attitude, influence, petty corruption, society.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
3385 Supply Chain Management and E-Commerce Technology Adoption among Logistics Service Providers in Malaysia

Authors: Mohd Iskandar bin Illyas Tan, Iziati Saadah bt Ibrahim

Abstract:

Logistics is part of the supply chain processes that plans, implements, and controls the efficient and effective forward and reverse flow and storage of goods, services, and related information between the point of origin and the point of consumption in order to meet customer requirements. This research aims to investigate the current status and future direction of the use of Information Technology (IT) for logistics, focusing on Supply Chain Management (SCM) and E-Commerce adoption in Malaysia. Therefore, this research stresses on the type of technology being adopted, factors, benefits and barriers affecting the innovation in SCM and E-Commerce technology adoption among Logistics Service Providers (LSP). A mailed questionnaire survey was conducted to collect data from 265 logistics companies in Johor. The research revealed a high level of SCM technology adoption among LSP as they had adopted SCM technology in various business processes while they perceived a high level of benefits from SCM adoption.

Keywords: E-Commerce, Logistics Service Providers, Malaysia, Supply Chain Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4922
3384 Study of the Effectiveness of Solar Heat Gain and Day Light Factors on Minimizing Electricity Use in High Rise Buildings

Authors: Mansour Nikpour, Mohd Zin kandar, Mohsen Ghasemi, Hossein Fallah

Abstract:

Over half of the total electricity consumption is used in buildings. Air-conditioning and electric lighting are the two main resources of electricity consumption in high rise buildings. One way to reduce electricity consumption would be to limit heat gain into buildings, therefore reduce the demand for air-conditioning during hot summer months especially in hot regions. On the other hand natural daylight can be used to reduce the use of electricity for artificial lighting. In this paper effective factors on minimizing heat gain and achieving required day light were reviewed .As daylight always accompanied by solar heat gain. Also interactions between heat gain and daylight were discussed through previous studies and equations which are related to heat gain and day lighting especially in high rise buildings. As a result importance of building-s form and its component on energy consumption in buildings were clarified.

Keywords: High rise buildings, energy demand, day lighting, heat gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
3383 Tabu Search to Draw Evacuation Plans in Emergency Situations

Authors: S. Nasri, H. Bouziri

Abstract:

Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.

Keywords: Dynamic network flow, Load dependent transit time, Evacuation strategy, Earliest arrival flow problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
3382 A Calibration Approach towards Reducing ASM2d Parameter Subsets in Phosphorus Removal Processes

Authors: N.Boontian

Abstract:

A novel calibration approach that aims to reduce ASM2d parameter subsets and decrease the model complexity is presented. This approach does not require high computational demand and reduces the number of modeling parameters required to achieve the ASMs calibration by employing a sensitivity and iteration methodology. Parameter sensitivity is a crucial factor and the iteration methodology enables refinement of the simulation parameter values. When completing the iteration process, parameters values are determined in descending order of their sensitivities. The number of iterations required is equal to the number of model parameters of the parameter significance ranking. This approach was used for the ASM2d model to the evaluated EBPR phosphorus removal and it was successful. Results of the simulation provide calibration parameters. These included YPAO, YPO4, YPHA, qPHA, qPP, μPAO, bPAO, bPP, bPHA, KPS, YA, μAUT, bAUT, KO2 AUT, and KNH4 AUT. Those parameters were corresponding to the experimental data available.

Keywords: ASM2d, calibration approach, iteration methodology, sensitivity, phosphorus removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
3381 Development of Wind Turbine Simulator for Generator Torque Control

Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park

Abstract:

Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.

Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3129
3380 Column Size for R.C. Frames with High Drift

Authors: Sunil S. Mayengbam, S. Choudhury

Abstract:

A method to predict the column size for displacement based design of reinforced concrete frame buildings with higher target inter storey drift is reported here. The column depth derived from empirical relation as a function of given beam section, target inter-story drift, building plan features and common displacement based design parameters is used. Regarding the high drift requirement, a minimum column-beam moment capacity ratio is maintained during capacity design. The method is used in designing four, eight and twelve story frame buildings with displacement based design for three percent target inter storey drift. Non linear time history analysis of the designed buildings are performed under five artificial ground motions to show that the columns are found elastic enough to avoid column sway mechanism assuring that for the design the column size can be used with or without minor changes.

Keywords: Column size, point of contra flexure, displacement based design, capacity design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27316
3379 Footbridge Response on Single Pedestrian Induced Vibration Analysis

Authors: J. Kala, V. Salajka, P. Hradil

Abstract:

Many footbridges have natural frequencies that coincide with the dominant frequencies of the pedestrian-induced load and therefore they have a potential to suffer excessive vibrations under dynamic loads induced by pedestrians. Some of the design standards introduce load models for pedestrian loads applicable for simple structures. Load modeling for more complex structures, on the other hand, is most often left to the designer. The main focus of this paper is on the human induced forces transmitted to a footbridge and on the ways these loads can be modeled to be used in the dynamic design of footbridges. Also design criteria and load models proposed by widely used standards were introduced and a comparison was made. The dynamic analysis of the suspension bridge in Kolin in the Czech Republic was performed on detailed FEM model using the ANSYS program system. An attempt to model the load imposed by a single person and a crowd of pedestrians resulted in displacements and accelerations that are compared with serviceability criteria.

Keywords: Footbridge, Serviceability, Pedestrian action, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
3378 Comparison between Skyhook and Minimax Control Strategies for Semi-active Suspension System

Authors: Hongkun Zhang, Hermann Winner, Wenjun Li

Abstract:

This paper describes the development, modeling, and testing of skyhook and MiniMax control strategies of semi-active suspension. The control performances are investigated using Matlab/Simulink [1], with a two-degree-of-freedom quarter car semiactive suspension system model. The comparison and evaluation of control result are made using software-in-the-loop simulation (SILS) method. This paper also outlines the development of a hardware-inthe- loop simulation (HILS) system. The simulation results show that skyhook strategy can significantly reduce the resonant peak of body and provide improvement in vehicle ride comfort. Otherwise, MiniMax strategy can be employed to effectively improve drive safety of vehicle by influencing wheel load. The two strategies can be switched to control semi-active suspension system to fulfill different requirement of vehicle in different stages.

Keywords: Hardware-in-the-loop simulation, Semi-active suspension, Skyhook control, MiniMax control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
3377 Using Visual Technologies to Promote Excellence in Computer Science Education

Authors: Carol B. Collins, M. H. N Tabrizi

Abstract:

The purposes of this paper are to (1) promote excellence in computer science by suggesting a cohesive innovative approach to fill well documented deficiencies in current computer science education, (2) justify (using the authors' and others anecdotal evidence from both the classroom and the real world) why this approach holds great potential to successfully eliminate the deficiencies, (3) invite other professionals to join the authors in proof of concept research. The authors' experiences, though anecdotal, strongly suggest that a new approach involving visual modeling technologies should allow computer science programs to retain a greater percentage of prospective and declared majors as students become more engaged learners, more successful problem-solvers, and better prepared as programmers. In addition, the graduates of such computer science programs will make greater contributions to the profession as skilled problem-solvers. Instead of wearily rememorizing code as they move to the next course, students will have the problem-solving skills to think and work in more sophisticated and creative ways.

Keywords: Algorithms, CASE, UML, Problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
3376 A Study of Distinctive Models for Pre-hospital EMS in Thailand: Knowledge Capture

Authors: R. Sinthavalai, N. Memongkol, N. Patthanaprechawong, J. Viriyanantavong, C. Choosuk

Abstract:

In Thailand, the practice of pre-hospital Emergency Medical Service (EMS) in each area reveals the different growth rates and effectiveness of the practices. Those can be found as the diverse quality and quantity. To shorten the learning curve prior to speed-up the practices in other areas, story telling and lessons learnt from the effective practices are valued as meaningful knowledge. To this paper, it was to ascertain the factors, lessons learnt and best practices that have impact as contributing to the success of prehospital EMS system. Those were formulized as model prior to speedup the practice in other areas. To develop the model, Malcolm Baldrige National Quality Award (MBNQA), which is widely recognized as a framework for organizational quality assessment and improvement, was chosen as the discussion framework. Remarkably, this study was based on the consideration of knowledge capture; however it was not to complete the loop of knowledge activities. Nevertheless, it was to highlight the recognition of knowledge capture, which is the initiation of knowledge management.

Keywords: Emergency Medical Service, Modeling, MBNQA, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
3375 Mining Association Rules from Unstructured Documents

Authors: Hany Mahgoub

Abstract:

This paper presents a system for discovering association rules from collections of unstructured documents called EART (Extract Association Rules from Text). The EART system treats texts only not images or figures. EART discovers association rules amongst keywords labeling the collection of textual documents. The main characteristic of EART is that the system integrates XML technology (to transform unstructured documents into structured documents) with Information Retrieval scheme (TF-IDF) and Data Mining technique for association rules extraction. EART depends on word feature to extract association rules. It consists of four phases: structure phase, index phase, text mining phase and visualization phase. Our work depends on the analysis of the keywords in the extracted association rules through the co-occurrence of the keywords in one sentence in the original text and the existing of the keywords in one sentence without co-occurrence. Experiments applied on a collection of scientific documents selected from MEDLINE that are related to the outbreak of H5N1 avian influenza virus.

Keywords: Association rules, information retrieval, knowledgediscovery in text, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
3374 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson Critical number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
3373 Main Cause of Children's Deaths in Indigenous Wayuu Community from Department of La Guajira: A Research Developed through Data Mining Use

Authors: Isaura Esther Solano Núñez, David Suarez

Abstract:

The main purpose of this research is to discover what causes death in children of the Wayuu community, and deeply analyze those results in order to take corrective measures to properly control infant mortality. We consider important to determine the reasons that are producing early death in this specific type of population, since they are the most vulnerable to high risk environmental conditions. In this way, the government, through competent authorities, may develop prevention policies and the right measures to avoid an increase of this tragic fact. The methodology used to develop this investigation is data mining, which consists in gaining and examining large amounts of data to produce new and valuable information. Through this technique it has been possible to determine that the child population is dying mostly from malnutrition. In short, this technique has been very useful to develop this study; it has allowed us to transform large amounts of information into a conclusive and important statement, which has made it easier to take appropriate steps to resolve a particular situation.

Keywords: Malnutrition, datamining, analytical, descriptive, population, wayuu, indigenous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
3372 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.

Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
3371 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: Activation parameters, creep mechanisms, high strength steels, low temperature creep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
3370 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
3369 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines

Authors: T. Davitashvili, G. Gubelidze

Abstract:

In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.

Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
3368 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Soil organic carbon, modeling, neural networks, CDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
3367 Realization of Design Features for Linear Flow Splitting in NX 6

Authors: Anselm L. Schüle, Thomas Rollmann, Reiner Anderl

Abstract:

Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.

Keywords: Linear Flow Splitting, CRC 666, User Defined Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
3366 Mechanical Characteristics and Modeling of Multiple Trench Friction Pendulum System with Multi-intermediate Sliding Plates

Authors: C. S. Tsai, Yung-Chang Lin

Abstract:

In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing multiple intermediate sliding plates. By means of mathematical formulations, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Keywords: Friction Pendulum System, Multiple Friction Pendulum System, Base Isolation, Earthquake Engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
3365 Integrated Models of Reading Comprehension: Understanding to Impact Teaching: The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aide teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: Explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190
3364 Generalized Differential Quadrature Nonlinear Consolidation Analysis of Clay Layer with Time-Varied Drainage Conditions

Authors: A. Bahmanikashkouli, O.R. Bahadori Nezhad

Abstract:

In this article, the phenomenon of nonlinear consolidation in saturated and homogeneous clay layer is studied. Considering time-varied drainage model, the excess pore water pressure in the layer depth is calculated. The Generalized Differential Quadrature (GDQ) method is used for the modeling and numerical analysis. For the purpose of analysis, first the domain of independent variables (i.e., time and clay layer depth) is discretized by the Chebyshev-Gauss-Lobatto series and then the nonlinear system of equations obtained from the GDQ method is solved by means of the Newton-Raphson approach. The obtained results indicate that the Generalized Differential Quadrature method, in addition to being simple to apply, enjoys a very high accuracy in the calculation of excess pore water pressure.

Keywords: Generalized Differential Quadrature method, Nonlinear consolidation, Nonlinear system of equations, Time-varied drainage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
3363 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.

Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
3362 Design and Implementation of Reed Solomon Encoder on FPGA

Authors: Amandeep Singh, Mandeep Kaur

Abstract:

Error correcting codes are used for detection and correction of errors in digital communication system. Error correcting coding is based on appending of redundancy to the information message according to a prescribed algorithm. Reed Solomon codes are part of channel coding and withstand the effect of noise, interference and fading. Galois field arithmetic is used for encoding and decoding reed Solomon codes. Galois field multipliers and linear feedback shift registers are used for encoding the information data block. The design of Reed Solomon encoder is complex because of use of LFSR and Galois field arithmetic. The purpose of this paper is to design and implement Reed Solomon (255, 239) encoder with optimized and lesser number of Galois Field multipliers. Symmetric generator polynomial is used to reduce the number of GF multipliers. To increase the capability toward error correction, convolution interleaving will be used with RS encoder. The Design will be implemented on Xilinx FPGA Spartan II.

Keywords: Galois Field, Generator polynomial, LFSR, Reed Solomon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4844
3361 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
3360 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm

Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour

Abstract:

In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.

Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
3359 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: Industrial drying, Modeling, Pistachio, quality properties, Traditional drying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
3358 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127