Search results for: model reference adaptive control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11026

Search results for: model reference adaptive control

10726 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers

Authors: Thomas Fuhrmann

Abstract:

In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
10725 Design of Smith-like Predictive Controller with Communication Delay Adaptation

Authors: Jasmin Velagic

Abstract:

This paper addresses the design of predictive networked controller with adaptation of a communication delay. The networked control system contains random delays from sensor to controller and from controller to actuator. The proposed predictive controller includes an adaptation loop which decreases the influence of communication delay on the control performance. Also, the predictive controller contains a filter which improves the robustness of the control system. The performance of the proposed adaptive predictive controller is demonstrated by simulation results in comparison with PI controller and predictive controller with constant delay.

Keywords: Predictive control, adaptation, communication delay, communication network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
10724 Adaptive Noise Reduction Algorithm for Speech Enhancement

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Least Mean Square (LMS) adaptive noise reduction algorithm is proposed to enhance the speech signal from the noisy speech. In this, the speech signal is enhanced by varying the step size as the function of the input signal. Objective and subjective measures are made under various noises for the proposed and existing algorithms. From the experimental results, it is seen that the proposed LMS adaptive noise reduction algorithm reduces Mean square Error (MSE) and Log Spectral Distance (LSD) as compared to that of the earlier methods under various noise conditions with different input SNR levels. In addition, the proposed algorithm increases the Peak Signal to Noise Ratio (PSNR) and Segmental SNR improvement (ΔSNRseg) values; improves the Mean Opinion Score (MOS) as compared to that of the various existing LMS adaptive noise reduction algorithms. From these experimental results, it is observed that the proposed LMS adaptive noise reduction algorithm reduces the speech distortion and residual noise as compared to that of the existing methods.

Keywords: LMS, speech enhancement, speech quality, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
10723 Ontology-Navigated Tutoring System for Flipped-Mastery Model

Authors: Masao Okabe

Abstract:

Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can prepare for and review a class, in a more flexibly personalizable way than by videos. Structuralizing learning materials by its ontology, EduGraph also helps students integrate what they learn as knowledge, and makes learning materials sharable. EduGraph was used for an introductory course for freshmen. This application suggests that EduGraph is effective.

Keywords: Adaptive e-learning, flipped classroom, mastery learning, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
10722 Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach

Authors: Liming Zhang

Abstract:

There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.

Keywords: Adaptive Fourier decomposition, Fourier series, signal processing, instantaneous frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
10721 A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework

Authors: Hamideh Mahdavifar, Ramin Nassiri, Alireza Bagheri

Abstract:

Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.

Keywords: Business Reference Model (BRM), Federal Enterprise Architecture (FEA), ISTQB, Test Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
10720 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
10719 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch

Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee

Abstract:

This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.

Keywords: Adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
10718 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

Authors: C. Ganesh Babu, P. T. Vanathi

Abstract:

In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
10717 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
10716 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles

Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan

Abstract:

In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.

Keywords: Automobile suspension, MATLAB, control system, PID, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
10715 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: Sliding mode control, bus model, air suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
10714 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain

Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami

Abstract:

In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed a user-friendly interactive design methods using the GeoGebra platform.

Keywords: Control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216
10713 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis

Authors: Deng Zengming, Wang Mingjiang

Abstract:

As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.

Keywords: View synthesis, Gaussian mixture model, hybrid framework, fusion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
10712 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives

Authors: Roozbeh Molavi, Davood A. Khaburi

Abstract:

The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.

Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
10711 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.

Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
10710 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
10709 An Attribute Based Access Control Model with POL Module for Dynamically Granting and Revoking Authorizations

Authors: Gang Liu, Huimin Song, Can Wang, Runnan Zhang, Lu Fang

Abstract:

Currently, resource sharing and system security are critical issues. This paper proposes a POL module composed of PRIV ILEGE attribute (PA), obligation and log which improves attribute based access control (ABAC) model in dynamically granting authorizations and revoking authorizations. The following describes the new model termed PABAC in terms of the POL module structure, attribute definitions, policy formulation and authorization architecture, which demonstrate the advantages of it. The POL module addresses the problems which are not predicted before and not described by access control policy. It can be one of the subject attributes or resource attributes according to the practical application, which enhances the flexibility of the model compared with ABAC. A scenario that illustrates how this model is applied to the real world is provided.

Keywords: Access control, attribute based access control, granting authorizations, privilege, revoking authorizations, system security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
10708 Reference Management Software: Comparative Analysis of RefWorks and Zotero

Authors: Sujit K. Basak

Abstract:

This paper presents a comparison of reference management software between RefWorks and Zotero. The results were drawn by comparing two software and the novelty of this paper is the comparative analysis of software and it has shown that ReftWorks can import more information from the Google Scholar for the researchers. This finding could help to know researchers to use the reference management software.

Keywords: Analysis, comparative analysis, reference management software, researchers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
10707 Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS

Authors: Lu Yanhui, Wang Chunming, Yin Changchuan, Yue Guangxin

Abstract:

In this paper, we address the problem of adaptive radio resource allocation (RRA) and packet scheduling in the downlink of a cellular OFDMA system, and propose a downlink multi-carrier proportional fair (MPF) scheduler and its joint with adaptive RRA algorithm to distribute radio resources among multiple users according to their individual QoS requirements. The allocation and scheduling objective is to maximize the total throughput, while at the same time maintaining the fairness among users. The simulation results demonstrate that the methods presented provide for user more explicit fairness relative to RRA algorithm, but the joint scheme achieves the higher sum-rate capacity with flexible parameters setting compared with MPF scheduler.

Keywords: OFDMA, adaptive radio resource allocation, scheduling, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
10706 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969
10705 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: Hierarchical process control, knowledge discovery from databases, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
10704 Performance Analysis of Adaptive OFDM Pre and Post-FTT Beamforming System

Authors: S. Elnobi, Iman El-Zahaby, Amr M. Mahros

Abstract:

In mobile communication systems, performance and capacity are affected by multi-path fading, delay spread and Co-Channel Interference (CCI). For this reason Orthogonal Frequency Division Multiplexing (OFDM) and adaptive antenna array are used is required. The goal of the OFDM is to improve the system performance against Inter-Symbol Interference (ISI). An array of adaptive antennas has been employed to suppress CCI by spatial technique. To suppress CCI in OFDM systems two main schemes the pre-FFT and the post-FFT have been proposed. In this paper, through a system level simulation, the behavior of the pre-FFT and post-FFT beamformers for OFDM system has been investigated based on two algorithms namely, Least Mean Squares (LMS) and Recursive Least Squares (RLS). The performance of the system is also discussed in multipath fading channel system specified by 3GPP Long Term Evolution (LTE).

Keywords: OFDM, Beamforming, Adaptive Antennas Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
10703 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
10702 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila, V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738
10701 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: Optimal control, stochastic systems, quantum systems, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
10700 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
10699 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System

Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami

Abstract:

In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.

Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
10698 Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer

Authors: S.M. Bahri, F.T. Bendimerad

Abstract:

We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.

Keywords: Adaptive Beamforming, LMS Algorithm, MCCDMA, MIMO System, Smart Antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
10697 Adaptive Filtering of Heart Rate Signals for an Improved Measure of Cardiac Autonomic Control

Authors: Desmond B. Keenan, Paul Grossman

Abstract:

In order to provide accurate heart rate variability indices of sympathetic and parasympathetic activity, the low frequency and high frequency components of an RR heart rate signal must be adequately separated. This is not always possible by just applying spectral analysis, as power from the high and low frequency components often leak into their adjacent bands. Furthermore, without the respiratory spectra it is not obvious that the low frequency component is not another respiratory component, which can appear in the lower band. This paper describes an adaptive filter, which aids the separation of the low frequency sympathetic and high frequency parasympathetic components from an ECG R-R interval signal, enabling the attainment of more accurate heart rate variability measures. The algorithm is applied to simulated signals and heart rate and respiratory signals acquired from an ambulatory monitor incorporating single lead ECG and inductive plethysmography sensors embedded in a garment. The results show an improvement over standard heart rate variability spectral measurements.

Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, spectral analysis, adaptive filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756