Search results for: Learning Algorithms
3014 Density Clustering Based On Radius of Data (DCBRD)
Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.
Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18773013 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula
Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan
Abstract:
This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.
Keywords: Simulation-based teaching, hands-on learning, feedback-based learning, scaffolding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17283012 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14963011 Integrated Learning in Engineering Services: A Conceptual Framework
Authors: Satya Pilla
Abstract:
This study explores how the mechanics of learning paves the way to engineering innovation. Theories related to learning in the new product/service innovation are reviewed from an organizational perspective, behavioral perspective, and engineering perspective. From this, an engineering team-s external interactions for knowledge brokering and internal composition for skill balance are examined from a learning and innovation viewpoints. As a result, an integrated learning model is developed by reconciling the theoretical perspectives as well as developing propositions that emphasize the centrality of learning, and its drivers, in the engineering product/service development. The paper also provides a review and partial validation of the propositions using the results of a previously published field study in the aerospace industry.Keywords: Engineering Services, Integrated Learning, NewProduct Development, Service Innovation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12903010 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11743009 Promoting Reflection through Action Learning in a 3D Virtual World
Authors: R.L. Sanders, L. McKeown
Abstract:
An international cooperation between educators in Australia and the US has led to a reconceptualization of the teaching of a library science course at Appalachian State University. The pedagogy of Action Learning coupled with a 3D virtual learning environment immerses students in a social constructivist learning space that incorporates and supports interaction and reflection. The intent of this study was to build a bridge between theory and practice by providing students with a tool set that promoted personal and social reflection, and created and scaffolded a community of practice. Besides, action learning is an educational process whereby the fifty graduate students experienced their own actions and experience to improve performance.Keywords: action learning, action research, reflection, metacognition, virtual worlds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14273008 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.
Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6073007 The Performance of the Character-Access on the Checking Phase in String Searching Algorithms
Authors: Mahmoud M. Mhashi
Abstract:
A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithmKeywords: Pattern matching, string searching, charactercomparison, character-access, and checking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13093006 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and module based teaching and learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.
Keywords: Computer science education, project and module based, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34553005 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.
Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8163004 Extending E-learning systems based on Clause-Rule model
Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16793003 Using Multimedia in Computer Based Learning (CBL) A Case Study: Teaching Science to Student
Authors: Maryam Honarmand
Abstract:
Regarding to the fast growth of computer, internet, and virtual learning in our country (Iran) and need computer-based learning systems and multimedia tools as an essential part of such education, designing and implementing such systems would help teach different field such as science. This paper describes the basic principle of multimedia. At the end, with a description of learning science to the infant students, the method of this system will be explained.
Keywords: Multimedia tools, computer based learning, science, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14923002 Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space
Authors: Gishantha Thantulage, Tatiana Kalganova, Manissa Wilson
Abstract:
Ant Colony Algorithms have been applied to difficult combinatorial optimization problems such as the travelling salesman problem and the quadratic assignment problem. In this paper gridbased and random-based ant colony algorithms are proposed for automatic 3D hose routing and their pros and cons are discussed. The algorithm uses the tessellated format for the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speeds up computation. The performance of algorithm has been tested on a number of 3D models.Keywords: Ant colony algorithm, Automatic hose routing, tessellated format, RAPID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15803001 A Theory in Optimization of Ad-hoc Routing Algorithms
Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi
Abstract:
In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16733000 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.Keywords: Evolutionary algorithms, genetic algorithm, hydropower, multi-objective, reservoir operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27962999 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20162998 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.
Keywords: E-learning, physiological index, physiological signal, state of learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15152997 Performance Analysis of OQSMS and MDDR Scheduling Algorithms for IQ Switches
Authors: K. Navaz, Kannan Balasubramanian
Abstract:
Due to the increasing growth of internet users, the emerging applications of multicast are growing day by day and there is a requisite for the design of high-speed switches/routers. Huge amounts of effort have been done into the research area of multicast switch fabric design and algorithms. Different traffic scenarios are the influencing factor which affect the throughput and delay of the switch. The pointer based multicast scheduling algorithms are not performed well under non-uniform traffic conditions. In this work, performance of the switch has been analyzed by applying the advanced multicast scheduling algorithm OQSMS (Optimal Queue Selection Based Multicast Scheduling Algorithm), MDDR (Multicast Due Date Round-Robin Scheduling Algorithm) and MDRR (Multicast Dual Round-Robin Scheduling Algorithm). The results show that OQSMS achieves better switching performance than other algorithms under the uniform, non-uniform and bursty traffic conditions and it estimates optimal queue in each time slot so that it achieves maximum possible throughput.Keywords: Multicast, Switch, Delay, Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11652996 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302995 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems
Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi
Abstract:
In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13792994 A Bi-Objective Model for Location-Allocation Problem within Queuing Framework
Authors: Amirhossein Chambari, Seyed Habib Rahmaty, Vahid Hajipour, Aida Karimi
Abstract:
This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.Keywords: Queuing, Location, Bi-objective, NSGA-II, NRGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22782993 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.
Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27912992 Learning Objects Content Presentation Adaptation Model Considering Students' Learning Styles
Authors: Zenaide Carvalho da Silva, Andrey Ricardo Pimentel, Leandro Rodrigues Ferreira
Abstract:
Learning styles (LSs) correspond to the individual preferences of a person regarding the modes and forms in which he/she prefers to learn throughout the teaching/learning process. The content presentation of learning objects (LOs) using knowledge about the students’ LSs offers them digital educational resources tailored to their individual learning preferences. In this context, the most relevant characteristics of the LSs along with the most appropriate forms of LOs' content presentation were mapped and associated. Such was performed in order to define the composition of an adaptive model of LO's content presentation considering the LSs, which was called Adaptation of Content Presentation of Learning Objects Considering Learning Styles (ACPLOLS). LO prototypes were created with interfaces that were adapted to students' LSs. These prototypes were based on a model created for validation of the approaches that were used, which were established through experiments with the students. The results of subjective measures of students' emotional responses demonstrated that the ACPLOLS has reached the desired results in relation to the adequacy of the LOs interface, in accordance with the Felder-Silverman LSs Model.
Keywords: Adaptation, interface, learning styles, learning objects, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5392991 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: Synthetic gene network, network identification, nonlinear modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8042990 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency
Authors: Sandesh Achar
Abstract:
Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.
Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6312989 Survey of Key Management Algorithms in WiMAX
Authors: R. Chithra, B. Kalavathi, J. Christy Lavanya
Abstract:
WiMAX is a telecommunications technology and it is specified by the Institute of Electrical and Electronics Engineers Inc., as the IEEE 802.16 standard. The goal of this technology is to provide a wireless data over long distances in a variety of ways. IEEE 802.16 is a recent standard for mobile communication. In this paper, we provide an overview of various key management algorithms to provide security for WiMAX.
Keywords: Broadcast, Rekeying, Scalability, Secrecy, Unicast, WiMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20372988 Socioculture and Cognitivist Perspectives on Language and Communication Barriers in Learning
Authors: David Hallberg
Abstract:
It is believed that major account on language diversity must be taken in learning, and especially in learning using ICT. This paper-s objective is to exhibit language and communication barriers in learning, to approach the topic from socioculture and cognitivist perspectives, and to give exploratory solutions of handling such barriers. The review is mainly conducted by approaching the journal Computers & Education, but also an initially broad search was conducted. The results show that not much attention is paid on language and communication barriers in an immediate relation to learning using ICT. The results shows, inter alia, that language and communication barriers are caused because of not enough account is taken on both the individual-s background and the technology.
Keywords: communication barriers, cognitive, ICT, language barriers, learning, socioculture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23602987 A Study of Touching Characters in Degraded Gurmukhi Text
Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma
Abstract:
Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text.Keywords: Character Segmentation, Middle Zone, Touching Characters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18412986 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.
Keywords: Biometrics, finger vein recognition, Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19622985 Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning
Authors: Sandeep Singh Gill, Rajeevan Chandel, Ashwani Chandel
Abstract:
This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.
Keywords: Partitioning, genetic algorithm, ant colony optimization, non-polynomial hard, netlist, mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249