Search results for: Haar wavelet transform
633 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543632 Studies on Automatic Measurement Technology for Surface Braided Angle of Three-Dimensional Braided Composite Material Performs
Authors: Na Li
Abstract:
This paper describes a new measuring algorithm for three-dimensional (3-D) braided composite material .Braided angle is an important parameter of braided composites. The objective of this paper is to present an automatic measuring system. In the paper, the algorithm is performed by using vcµ6.0 language on PC. An advanced filtered algorithm for image of 3-D braided composites material performs has been developed. The procedure is completely automatic and relies on the gray scale information content of the images and their local wavelet transform modulus maxims. Experimental results show that the proposed method is feasible. The algorithm was tested on both carbon-fiber and glass-fiber performs.Keywords: Three-Dimensional composite material, Mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362631 Efficient Hardware Architecture of the Direct 2- D Transform for the HEVC Standard
Authors: Fatma Belghith, Hassen Loukil, Nouri Masmoudi
Abstract:
This paper presents the hardware design of a unified architecture to compute the 4x4, 8x8 and 16x16 efficient twodimensional (2-D) transform for the HEVC standard. This architecture is based on fast integer transform algorithms. It is designed only with adders and shifts in order to reduce the hardware cost significantly. The goal is to ensure the maximum circuit reuse during the computing while saving 40% for the number of operations. The architecture is developed using FIFOs to compute the second dimension. The proposed hardware was implemented in VHDL. The VHDL RTL code works at 240 MHZ in an Altera Stratix III FPGA. The number of cycles in this architecture varies from 33 in 4-point- 2D-DCT to 172 when the 16-point-2D-DCT is computed. Results show frequency improvements reaching 96% when compared to an architecture described as the direct transcription of the algorithm.Keywords: HEVC, Modified Integer Transform, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752630 An Engineering Approach to Forecast Volatility of Financial Indices
Authors: Irwin Ma, Tony Wong, Thiagas Sankar
Abstract:
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633629 Detection of Sags, Swells, and Transients Using Windowing Technique Based On Continuous S-Transform (CST)
Authors: K. Daud, A. F. Abidin, N. Hamzah, H. S. Nagindar Singh
Abstract:
This paper produces a new approach for power quality analysis using a windowing technique based on Continuous S-transform (CST). This half-cycle window technique approach can detect almost correctly for initial detection of disturbances i.e. voltage sags, swells, and transients. Samples in half cycle window has been analyzed based continuous S-transform for entire disturbance waveform. The modified parameter has been produced by MATLAB programming m-file based on continuous s-transform. CST has better time frequency and localization property than traditional and also has ability to detect the disturbance under noisy condition correctly. The excellent time-frequency resolution characteristic of the CST makes it the most an attractive candidate for analysis of power system disturbances signals.
Keywords: Power quality disturbances, initial detection, half cycle windowing, continuous S-transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051628 Human Action Recognition Based on Ridgelet Transform and SVM
Authors: A. Ouanane, A. Serir
Abstract:
In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environmentKeywords: Human action, Ridgelet Transform, PCA, K-means, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075627 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation
Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya
Abstract:
Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.
Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198626 Watermarking Scheme for Color Images using Wavelet Transform based Texture Properties and Secret Sharing
Authors: Nagaraj V. Dharwadkar, B.B.Amberker
Abstract:
In this paper, a new secure watermarking scheme for color image is proposed. It splits the watermark into two shares using (2, 2)- threshold Visual Cryptography Scheme (V CS) with Adaptive Order Dithering technique and embeds one share into high textured subband of Luminance channel of the color image. The other share is used as the key and is available only with the super-user or the author of the image. In this scheme only the super-user can reveal the original watermark. The proposed scheme is dynamic in the sense that to maintain the perceptual similarity between the original and the watermarked image the selected subband coefficients are modified by varying the watermark scaling factor. The experimental results demonstrate the effectiveness of the proposed scheme. Further, the proposed scheme is able to resist all common attacks even with strong amplitude.Keywords: VCS, Dithering, HVS, DWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053625 Motion Parameter Estimation via Dopplerlet-Transform-Based Matched Field Processing
Authors: Hongyan Dai
Abstract:
This work presents a matched field processing (MFP) algorithm based on Dopplerlet transform for estimating the motion parameters of a sound source moving along a straight line and with a constant speed by using a piecewise strategy, which can significantly reduce the computational burden. Monte Carlo simulation results and an experimental result are presented to verify the effectiveness of the algorithm advocated.Keywords: matched field processing; Dopplerlet transform; motion parameter estimation; piecewise strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229624 Thin Bed Reservoir Delineation Using Spectral Decomposition and Instantaneous Seismic Attributes, Pohokura Field, Taranaki Basin, New Zealand
Authors: P. Sophon, M. Kruachanta, S. Chaisri, G. Leaungvongpaisan, P. Wongpornchai
Abstract:
The thick bed hydrocarbon reservoirs are primarily interested because of the more prolific production. When the amount of petroleum in the thick bed starts decreasing, the thin bed reservoirs are the alternative targets to maintain the reserves. The conventional interpretation of seismic data cannot delineate the thin bed having thickness less than the vertical seismic resolution. Therefore, spectral decomposition and instantaneous seismic attributes were used to delineate the thin bed in this study. Short Window Discrete Fourier Transform (SWDFT) spectral decomposition and instantaneous frequency attributes were used to reveal the thin bed reservoir, while Continuous Wavelet Transform (CWT) spectral decomposition and envelope (instantaneous amplitude) attributes were used to indicate hydrocarbon bearing zone. The study area is located in the Pohokura Field, Taranaki Basin, New Zealand. The thin bed target is the uppermost part of Mangahewa Formation, the most productive in the gas-condensate production in the Pohokura Field. According to the time-frequency analysis, SWDFT spectral decomposition can reveal the thin bed using a 72 Hz SWDFT isofrequency section and map, and that is confirmed by the instantaneous frequency attribute. The envelope attribute showing the high anomaly indicates the hydrocarbon accumulation area at the thin bed target. Moreover, the CWT spectral decomposition shows the low-frequency shadow zone and abnormal seismic attenuation in the higher isofrequencies below the thin bed confirms that the thin bed can be a prospective hydrocarbon zone.
Keywords: Hydrocarbon indication, instantaneous seismic attribute, spectral decomposition, thin bed delineation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646623 Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding
Authors: T. Damak, S. Houidi, M. A. Ben Ayed, N. Masmoudi
Abstract:
The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.
Keywords: AMT, DCT II, hardware, transform, VVC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587622 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number
Authors: N. Dahraoui, M. Boulakroune, D. Benatia
Abstract:
In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov- Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.
Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224621 2.5D Face Recognition Using Gabor Discrete Cosine Transform
Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao
Abstract:
In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.Keywords: Gabor filter, discrete cosine transform, 2.5D face recognition, pose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758620 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features
Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk
Abstract:
The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878619 Presenting a Combinatorial Feature to Estimate Depth of Anesthesia
Authors: Toktam Zoughi, Reza Boostani
Abstract:
Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.Keywords: Depth of anesthesia, EEG, BIS, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865618 A Novel VLSI Architecture of Hybrid Image Compression Model based on Reversible Blockade Transform
Authors: C. Hemasundara Rao, M. Madhavi Latha
Abstract:
Image compression can improve the performance of the digital systems by reducing time and cost in image storage and transmission without significant reduction of the image quality. Furthermore, the discrete cosine transform has emerged as the new state-of-the art standard for image compression. In this paper, a hybrid image compression technique based on reversible blockade transform coding is proposed. The technique, implemented over regions of interest (ROIs), is based on selection of the coefficients that belong to different transforms, depending on the coefficients is proposed. This method allows: (1) codification of multiple kernals at various degrees of interest, (2) arbitrary shaped spectrum,and (3) flexible adjustment of the compression quality of the image and the background. No standard modification for JPEG2000 decoder was required. The method was applied over different types of images. Results show a better performance for the selected regions, when image coding methods were employed for the whole set of images. We believe that this method is an excellent tool for future image compression research, mainly on images where image coding can be of interest, such as the medical imaging modalities and several multimedia applications. Finally VLSI implementation of proposed method is shown. It is also shown that the kernal of Hartley and Cosine transform gives the better performance than any other model.Keywords: VLSI, Discrete Cosine Transform, JPEG, Hartleytransform, Radon Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841617 Face Detection using Gabor Wavelets and Neural Networks
Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani
Abstract:
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167616 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method
Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin
Abstract:
This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.
Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933615 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.
Keywords: Chaotic behavior, wavelet, noise reduction, river flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099614 A Hyper-Domain Image Watermarking Method based on Macro Edge Block and Wavelet Transform for Digital Signal Processor
Authors: Yi-Pin Hsu, Shin-Yu Lin
Abstract:
In order to protect original data, watermarking is first consideration direction for digital information copyright. In addition, to achieve high quality image, the algorithm maybe can not run on embedded system because the computation is very complexity. However, almost nowadays algorithms need to build on consumer production because integrator circuit has a huge progress and cheap price. In this paper, we propose a novel algorithm which efficient inserts watermarking on digital image and very easy to implement on digital signal processor. In further, we select a general and cheap digital signal processor which is made by analog device company to fit consumer application. The experimental results show that the image quality by watermarking insertion can achieve 46 dB can be accepted in human vision and can real-time execute on digital signal processor.
Keywords: watermarking, digital signal processor, embedded system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254613 EPR Hiding in Medical Images for Telemedicine
Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar
Abstract:
Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762612 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions
Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168611 Diagnosis of Inter Turn Fault in the Stator of Synchronous Generator Using Wavelet Based ANFIS
Authors: R. Rajeswari, N. Kamaraj
Abstract:
In this paper, Wavelet based ANFIS for finding inter turn fault of generator is proposed. The detector uniquely responds to the winding inter turn fault with remarkably high sensitivity. Discrimination of different percentage of winding affected by inter turn fault is provided via ANFIS having an Eight dimensional input vector. This input vector is obtained from features extracted from DWT of inter turn faulty current leaving the generator phase winding. Training data for ANFIS are generated via a simulation of generator with inter turn fault using MATLAB. The proposed algorithm using ANFIS is giving satisfied performance than ANN with selected statistical data of decomposed levels of faulty current.Keywords: Winding InterTurn fault, ANN, ANFIS, and DWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948610 A Perceptual Image Coding method of High Compression Rate
Authors: Fahmi Kammoun, Mohamed Salim Bouhlel
Abstract:
In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.Keywords: Contrast Sensitivity Function, Human Visual System, Image compression, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881609 Image Compression Using Hybrid Vector Quantization
Authors: S.Esakkirajan, T. Veerakumar, V. Senthil Murugan, P.Navaneethan
Abstract:
In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.Keywords: Lifting Scheme, Multistage Vector Quantization and Pyramid Vector Quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940608 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform
Authors: Vijaya Prakash.A.M, K.S.Gurumurthy
Abstract:
In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143607 A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems
Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Rosli Besar, Muhammad Kamil Abdullah
Abstract:
In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.
Keywords: biometric, ecg, linear predictive coding, wavelet packet decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909606 Efficient Copy-Move Forgery Detection for Digital Images
Authors: Somayeh Sadeghi, Hamid A. Jalab, Sajjad Dadkhah
Abstract:
Due to availability of powerful image processing software and improvement of human computer knowledge, it becomes easy to tamper images. Manipulation of digital images in different fields like court of law and medical imaging create a serious problem nowadays. Copy-move forgery is one of the most common types of forgery which copies some part of the image and pastes it to another part of the same image to cover an important scene. In this paper, a copy-move forgery detection method proposed based on Fourier transform to detect forgeries. Firstly, image is divided to same size blocks and Fourier transform is performed on each block. Similarity in the Fourier transform between different blocks provides an indication of the copy-move operation. The experimental results prove that the proposed method works on reasonable time and works well for gray scale and colour images. Computational complexity reduced by using Fourier transform in this method.Keywords: Copy-Move forgery, Digital Forensics, Image Forgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789605 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881604 Smartphone Video Source Identification Based on Sensor Pattern Noise
Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.Keywords: Digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200