Search results for: Game Classification
1031 The Research of Fuzzy Classification Rules Applied to CRM
Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang
Abstract:
In the era of great competition, understanding and satisfying customers- requirements are the critical tasks for a company to make a profits. Customer relationship management (CRM) thus becomes an important business issue at present. With the help of the data mining techniques, the manager can explore and analyze from a large quantity of data to discover meaningful patterns and rules. Among all methods, well-known association rule is most commonly seen. This paper is based on Apriori algorithm and uses genetic algorithms combining a data mining method to discover fuzzy classification rules. The mined results can be applied in CRM to help decision marker make correct business decisions for marketing strategies.Keywords: Customer relationship management (CRM), Data mining, Apriori algorithm, Genetic algorithm, Fuzzy classification rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16611030 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9481029 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33081028 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.
Keywords: MACS, Implementation, Multi-Agent, SOA, Autonomous, WCF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091027 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11321026 Impovement of a Label Extraction Method for a Risk Search System
Authors: Shigeaki Sakurai, Ryohei Orihara
Abstract:
This paper proposes an improvement method of classification efficiency in a classification model. The model is used in a risk search system and extracts specific labels from articles posted at bulletin board sites. The system can analyze the important discussions composed of the articles. The improvement method introduces ensemble learning methods that use multiple classification models. Also, it introduces expressions related to the specific labels into generation of word vectors. The paper applies the improvement method to articles collected from three bulletin board sites selected by users and verifies the effectiveness of the improvement method.Keywords: Text mining, Risk search system, Corporate reputation, Bulletin board site, Ensemble learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13251025 Feature Selection Approaches with Missing Values Handling for Data Mining - A Case Study of Heart Failure Dataset
Authors: N.Poolsawad, C.Kambhampati, J. G. F. Cleland
Abstract:
In this paper, we investigated the characteristic of a clinical dataseton the feature selection and classification measurements which deal with missing values problem.And also posed the appropriated techniques to achieve the aim of the activity; in this research aims to find features that have high effect to mortality and mortality time frame. We quantify the complexity of a clinical dataset. According to the complexity of the dataset, we proposed the data mining processto cope their complexity; missing values, high dimensionality, and the prediction problem by using the methods of missing value replacement, feature selection, and classification.The experimental results will extend to develop the prediction model for cardiology.Keywords: feature selection, missing values, classification, clinical dataset, heart failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32111024 Object-Based Image Indexing and Retrieval in DCT Domain using Clustering Techniques
Authors: Hossein Nezamabadi-pour, Saeid Saryazdi
Abstract:
In this paper, we present a new and effective image indexing technique that extracts features directly from DCT domain. Our proposed approach is an object-based image indexing. For each block of size 8*8 in DCT domain a feature vector is extracted. Then, feature vectors of all blocks of image using a k-means algorithm is clustered into groups. Each cluster represents a special object of the image. Then we select some clusters that have largest members after clustering. The centroids of the selected clusters are taken as image feature vectors and indexed into the database. Also, we propose an approach for using of proposed image indexing method in automatic image classification. Experimental results on a database of 800 images from 8 semantic groups in automatic image classification are reported.
Keywords: Object-based image retrieval, DCT domain, Image indexing, Image classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251023 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14011022 Emotion Classification by Incremental Association Language Features
Authors: Jheng-Long Wu, Pei-Chann Chang, Shih-Ling Chang, Liang-Chih Yu, Jui-Feng Yeh, Chin-Sheng Yang
Abstract:
The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.Keywords: Association language features, Emotion Classification, Overlap-Category Feature, Nature Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971021 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25461020 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other artificial intelligence (AI)-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.
Keywords: Machine learning, text classification, NLP techniques, semantic representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401019 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23601018 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.
Keywords: Multivariate control chart, statistical process control, one-class classification method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22691017 Order Statistics-based “Anti-Bayesian“ Parametric Classification for Asymmetric Distributions in the Exponential Family
Authors: A. Thomas, B. John Oommen
Abstract:
Although the field of parametric Pattern Recognition (PR) has been thoroughly studied for over five decades, the use of the Order Statistics (OS) of the distributions to achieve this has not been reported. The pioneering work on using OS for classification was presented in [1] for the Uniform distribution, where it was shown that optimal PR can be achieved in a counter-intuitive manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample to a few samples distant from the mean. This must be contrasted with the Bayesian paradigm in which, if we are allowed to compare the testing sample with only a single point in the feature space from each class, the optimal strategy would be to achieve this based on the (Mahalanobis) distance from the corresponding central points, for example, the means. In [2], we showed that the results could be extended for a few symmetric distributions within the exponential family. In this paper, we attempt to extend these results significantly by considering asymmetric distributions within the exponential family, for some of which even the closed form expressions of the cumulative distribution functions are not available. These distributions include the Rayleigh, Gamma and certain Beta distributions. As in [1] and [2], the new scheme, referred to as Classification by Moments of Order Statistics (CMOS), attains an accuracy very close to the optimal Bayes’ bound, as has been shown both theoretically and by rigorous experimental testing.
Keywords: Classification using Order Statistics (OS), Exponential family, Moments of OS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291016 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime
Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul
Abstract:
In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18551015 Agent-Based Simulation of Simulating Anticipatory Systems – Classification
Authors: Eugene Kindler
Abstract:
The present paper is oriented to classification and application of agent technique in simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. The main ideas root in the fact that the best way for description of computer simulation models is the technique of describing the simulated system itself (and the translation into the computer code is provided as automatic), and that the anticipation itself is often nested.
Keywords: Agents, Anticipatory systems, Discrete eventsimulation, Simula, Taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581014 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation
Authors: Vadim Vagin, Marina Fomina, Oleg Morosin
Abstract:
This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.Keywords: Argumentation, justification degrees, inductive concept formation, noise, generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171013 Artificial Intelligence Techniques applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251012 A method for Music Classification Based On Perceived Mood Detection for Indian Bollywood Music
Authors: Vallabha Hampiholi
Abstract:
A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the "perceived mood" or the "emotions" related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information could also be helpful in better classification of the music database. In this paper we have presented a method to classify music not just based on the meta-data of the audio clip but also include the "mood" factor to help improve the music classification. We propose an automated and efficient way of classifying music samples based on the mood detection from the audio data. We in particular try to classify the music based on mood for Indian bollywood music. The proposed method tries to address the following problem statement: Genre information (usually part of the audio meta-data) alone does not help in better music classification. For example the acoustic version of the song "nothing else matters by Metallica" can be classified as melody music and thereby a person in relaxing or chill out mood might want to listen to this track. But more often than not this track is associated with metal / heavy rock genre and if a listener classified his play-list based on the genre information alone for his current mood, the user shall miss out on listening to this track. Currently methods exist to detect mood in western or similar kind of music. Our paper tries to solve the issue for Indian bollywood music from an Indian cultural context
Keywords: Mood, music classification, music genre, rhythm, music analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34761011 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: A. S. Adesuyi, Z. Munch
Abstract:
This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.Keywords: Change detection, Land cover, NDVI, time-series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22891010 A Review on Soft Computing Technique in Intrusion Detection System
Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman
Abstract:
Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.Keywords: Intrusion Detection System, security, soft computing, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641009 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9111008 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17651007 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17651006 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17511005 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment
Authors: Sudipta Majumdar, Amarendra Kumar Mishra
Abstract:
This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12871004 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24541003 How Social Network Structure Affects the Dynamics of Evolution of Cooperation?
Authors: Mohammad Akbarpour, Reza Nasiri Mahalati, Caro Lucas
Abstract:
The existence of many biological systems, especially human societies, is based on cooperative behavior [1, 2]. If natural selection favors selfish individuals, then what mechanism is at work that we see so many cooperative behaviors? One answer is the effect of network structure. On a graph, cooperators can evolve by forming network bunches [2, 3, 4]. In a research, Ohtsuki et al used the idea of iterated prisoners- dilemma on a graph to model an evolutionary game. They showed that the average number of neighbors plays an important role in determining whether cooperation is the ESS of the system or not [3]. In this paper, we are going to study the dynamics of evolution of cooperation in a social network. We show that during evolution, the ratio of cooperators among individuals with fewer neighbors to cooperators among other individuals is greater than unity. The extent to which the fitness function depends on the payoff of the game determines this ratio.Keywords: Evolution of cooperation, Iterated prisoner's dilemma, Model dynamics, Social network structure, Intensity of selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13551002 An Automated Method to Segment and Classify Masses in Mammograms
Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham
Abstract:
Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.Keywords: classification, computer-aided detection, featureextraction, mass detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657