Search results for: Bioprocess engineering
809 Gypseous Soil Improvement using Fuel Oil
Authors: Hussein Yousif Aziz, Jianlin Ma
Abstract:
This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.Keywords: Collapsibility, Enhancement of Gypseous Soils, Geotechnical Engineering, Gypseous soil, Shear Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632808 Tracing Quality Cost in a Luggage Manufacturing Industry
Authors: S. B. Jaju, R. R. Lakhe
Abstract:
Quality costs are the costs associated with preventing, finding, and correcting defective work. Since the main language of corporate management is money, quality-related costs act as means of communication between the staff of quality engineering departments and the company managers. The objective of quality engineering is to minimize the total quality cost across the life of product. Quality costs provide a benchmark against which improvement can be measured over time. It provides a rupee-based report on quality improvement efforts. It is an effective tool to identify, prioritize and select quality improvement projects. After reviewing through the literature it was noticed that a simplified methodology for data collection of quality cost in a manufacturing industry was required. The quantified standard methodology is proposed for collecting data of various elements of quality cost categories for manufacturing industry. Also in the light of research carried out so far, it is felt necessary to standardise cost elements in each of the prevention, appraisal, internal failure and external failure costs. . Here an attempt is made to standardise the various cost elements applicable to manufacturing industry and data is collected by using the proposed quantified methodology. This paper discusses the case study carried in luggage manufacturing industry.Keywords: Quality Costs, PAF model, quantified methodology, Case study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254807 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758806 Modelling and Enhancing Engineering Drawing and Design Table Design by Analyzing Stress and Advanced Deformation Analysis Using Finite Element Method
Authors: Nitesh Pandey, Manish Kumar, Amit Kumar Srivastava, Pankaj Gupta
Abstract:
The research presents an extensive analysis of the Engineering Drawing and Design (EDD) table's design and development, accentuating its convertible utility and ergonomic design principles. Through the amalgamation of advanced design methodologies with simulation tools, this paper explores and compares the structural integrity of the EDD table, considering both linear and nonlinear stress behaviors. The study evaluates stress distribution and deformation patterns using the Finite Element Method (FEM) in Autodesk Fusion 360 CAD/CAM software. These analyses are critical to maximizing the durability and performance of the table. Stress situations are modeled using mathematical equations, which provide an accurate depiction of real-world operational conditions. The research highlights the EDD table as an innovative solution tailored to the diverse needs of modern workspaces, providing a balance of practical functionality and ergonomic design while demonstrating cost-effectiveness and time efficiency in the design process.
Keywords: Parametric modelling, Finite element method, FEM, Autodesk Fusion 360, stress analysis, CAD/CAM, computer aided design, computer-aided manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33805 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.
Keywords: STEM, computational thinking, physical computing, Arduino, Labview, self-efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813804 Photodetector Engineering with Plasmonic Properties
Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim
Abstract:
In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616803 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.
Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710802 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil
Authors: Yasser R. Tawfic, Mohamed A. Eid
Abstract:
Foundation differential settlement and supported structure tilting are an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers, and helical piers, jet grouted mortar columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with the limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, the micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: 1. Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. 2. For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in the slow rate. 3. If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. 4. Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.Keywords: Differential settlement, micro-tunnel, soil-structure interaction, tilted structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770801 Effect of Temperature on the Water Retention Capacity of Liner Materials
Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla
Abstract:
Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.
Keywords: Soil water retention curve, sand-expansive clay mixture, suction, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641800 A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry
Authors: Eberechi Weli, Michael Todinov
Abstract:
The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach.
This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.
Keywords: Cost effectiveness, organisational readiness, risk reduction, railway, system engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802799 Strengthening the HCI Approaches in the Software Development Process
Authors: Rogayah A. Majid, Nor Laila Md. Noor, Wan Adilah Wan Adnan
Abstract:
User-Centered Design (UCD), Usability Engineering (UE) and Participatory Design (PD) are the common Human- Computer Interaction (HCI) approaches that are practiced in the software development process, focusing towards issues and matters concerning user involvement. It overlooks the organizational perspective of HCI integration within the software development organization. The Management Information Systems (MIS) perspective of HCI takes a managerial and organizational context to view the effectiveness of integrating HCI in the software development process. The Human-Centered Design (HCD) which encompasses all of the human aspects including aesthetic and ergonomic, is claimed as to provide a better approach in strengthening the HCI approaches to strengthen the software development process. In determining the effectiveness of HCD in the software development process, this paper presents the findings of a content analysis of HCI approaches by viewing those approaches as a technology which integrates user requirements, ranging from the top management to other stake holder in the software development process. The findings obtained show that HCD approach is a technology that emphasizes on human, tools and knowledge in strengthening the HCI approaches to strengthen the software development process in the quest to produce a sustainable, usable and useful software product.
Keywords: Human-Centered Design (HCD), Management Information Systems (MIS), Participatory Design (PD), User- Centered Design (UCD), Usability Engineering (UE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241798 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.
Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821797 Application of GIS-Based Construction Engineering: An Electronic Document Management System
Authors: Mansour N. Jadid
Abstract:
This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.
Keywords: Construction, coordinate, engineering, GIS, management, map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450796 An Investigation of the Effect of the Different Mix Constituents on Concrete Electric Resistivity
Authors: H. M. Ghasemzadeh, Y. Mohammadi, Gh. Nouri, S. E. Nabavi
Abstract:
Steel corrosion in concrete is considered as a main engineering problems for many countries and lots of expenses has been paid for their repair and maintenance annually. This problem may occur in all engineering structures whether in coastal and offshore or other areas. Hence, concrete structures should be able to withstand corrosion factors existing in water or soil. Reinforcing steel corrosion enhancement can be measured by use of concrete electrical resistance; and maintaining high electric resistivity in concrete is necessary for steel corrosion prevention. Lots of studies devoted to different aspects of the subjects worldwide. In this paper, an evaluation of the effects of W/C ratio, cementitious materials, and percent increase in silica fume were investigated on electric resistivity of high strength concrete. To do that, sixteen mix design with one aggregate grading was planned. Five of them had varying amount of W/C ratio and other eleven mixes was prepared with constant W/C ratio but different amount of cementitious materials. Silica fume and super plasticizer were used with different proportions in all specimens. Specimens were tested after moist curing for 28 days. A total of 80 cube specimens (50 mm) were tested for concrete electrical resistance. Results show that concrete electric resistivity can be increased with increasing amount of cementitious materials and silica fume.Keywords: Corrosion, Electric resistivity, Mix design, Silica fume
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559795 Synthesis and Physicochemical Characterization of Biomimetic Scaffold of Gelatin/Zn-Incorporated 58S Bioactive Glass
Authors: Seyed Mohammad Hosseini, Amirhossein Moghanian
Abstract:
The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn) in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) activity tests were carried out for investigation of MC3T3-E1 cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases and also HA characteristic peaks were detected by XRD spectroscopy after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of ALP activity test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity and growth of MC3T3-E1 cells in comparison with other samples in bone tissue engineering.
Keywords: Scaffold, gelatin, modified bioactive glass, ALP, bone tissue engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409794 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332793 Master in Maritime Logistics: An Industry-Driven Design
Authors: Marco Sernaglia, Augusto M. P. Carreira, Helena M. L. Carvalho, Pedro B. Água, Armindo Frias, Manuel Carrasqueira
Abstract:
The existence of mismatches between the qualification requirements of professionals in the maritime industry and existing higher education offers was verified within the scope of the European project MarLEM (Maritime Logistics Engineering and Management). Professionals in the maritime industry today and in the future face additional obstacles as a result of the sector's global nature as well as the sector's rapid technological and social evolution. As a result, they feel the need to update their skills and knowledge. A professional-oriented master's program was developed to fill this gap. The NOVA School of Science and Technology and the Portuguese Naval School co-developed this Master's program with the active participation of MarLEM project partners from academia and industry. In this work, the principles and approach used to design the master's program are presented. Its design and a concise synopsis of the courses' content are shown. In addition, other international courses covering the same topic are compared. As a result of this work, the teaching materials related to maritime logistics are improved and the assumptions and methodology that guided the creation of an international master's program in maritime logistics are disseminated.
Keywords: Education, maritime logistics, shipping, industrial engineering, management, soft skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507792 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration design and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3034791 Educational Experiences in Engineering in the COVID-19 Era and Their Comparative Analysis: Spain, March-June 2020
Authors: Borja Bordel, Ramón Alcarria, Marina Pérez
Abstract:
In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education was considered. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching was involved. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.
Keywords: educational experience, online education, higher education digitalization, COVID, Spain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457790 Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates
Authors: Chung-Yao Yang, Lin-Ya Huang, Tang-Long Shen, J. Andrew Yeh
Abstract:
The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research.Keywords: Nanosponge, Cell adhesion, Cell morphology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556789 Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices
Authors: Kaan Yamanturk, Cihan Dogruoz
Abstract:
Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.
Keywords: Maximum considered earthquake, moment resisting frame, seismic isolator, seismic design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670788 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283787 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries: A Case Study
Authors: A. M. Qahtani, G. B. Wills, A. M. Gravell
Abstract:
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.
Keywords: Customisation Software Products, Global Software Engineering, Local Decision Making, Requirement Engineering, Simulation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897786 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration
Authors: Lo Kar Yin
Abstract:
In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to identify the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organisations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.
Keywords: Sustainable Development, Sustainable solutions, contract, construction value chain, Building Information Modelling, BIM integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184785 Evaluation and Comparison of Seismic Performance of Structural Trusses under Cyclic Loading with Finite Element Method
Authors: Masoud Mahdavi
Abstract:
The structure is made using different members and combining them with each other. These members are basically based on technical and engineering principles and are combined in different ways and have their own unique effects on the building. Trusses are one of the most common and important members of the structure, accounting for a large percentage of the power transmission structure in the building. Different types of trusses are based on structural needs and evaluating and making complete comparisons between them is one of the most important engineering analyses. In the present study, four types of trusses have been studied; 1) Hawe truss, 2) Pratt truss, 3) k truss, and 4) warren truss, under cyclic loading for 80 seconds. The trusses are modeled in 3d using st37 steel. The results showed that Hawe trusses had higher values than all other trusses (k, Pratt and Warren) in all the studied indicators. Indicators examined in the study include; 1) von Mises stresses, 2) displacement, 3) support force, 4) velocity, 5) acceleration, 6) capacity (hysteresis curve) and 7) energy diagram. Pratt truss in indicators; Mises stress, displacement, energy have the least amount compared to other trusses. K truss in indicators; support force, speed and acceleration are the lowest compared to other trusses.
Keywords: Hawe truss, Pratt truss, K truss, Warren truss, cyclic loading, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599784 Impact on Course Registration and SGPA of the Students of BSc in EEE Programme due to Online Teaching during the COVID-19 Pandemic
Authors: Muhibul Haque Bhuyan
Abstract:
Most educational institutions were compelled to switch over to the online mode of teaching, learning, and assessment due to the lockdown when the corona pandemic started around the globe in the early part of the year 2020. However, they faced a unique set of challenges in delivering knowledge and skills to their students as well as formulating a proper assessment policy. This paper investigates whether there is an impact on the student Semester Grade Point Average (SGPA) due to the online mode of teaching and learning assessment at the Department of Electrical and Electronic Engineering (EEE) of Southeast University (SEU). Details of student assessments are discussed. Then students’ grades were analyzed to find out the impact on SGPA based on the z-test by finding the standard deviation (). It also pointed out the challenges associated with the online classes and assessment strategies to be adopted during the online assessment. The student admission, course advising, and registration statistics were also presented in several tables and analyzed based on the change in percentage to observe the impact on it due to the pandemic. In summary, it was observed that the students’ SGPAs are not affected but student course advising and registration were affected slightly by the pandemic. Finally, the paper provides some recommendations to improve the online teaching, learning, assessment, and evaluation system.
Keywords: electrical and electronic engineering students, impact on course grading and SGPA, online assessment, online teaching, student registration, semester result
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406783 Analysis of Hard Turning Process of AISI D3-Thermal Aspects
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353782 Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital
Authors: Mohamed Elshal, Hazim El-Mounayri, Omar El-Mounayri
Abstract:
Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.Keywords: Systems modeling, ED operation, workflow modeling, systems analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042781 Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building
Authors: Bahador Bagheri, Ehsan Salimi Firoozabad, Mohammadreza Yahyaei
Abstract:
As the world move to the accomplishment of Performance Based Engineering philosophies in seismic design of Civil Engineering structures, new seismic design provisions require Structural Engineers to perform both static and dynamic analysis for the design of structures. While Linear Equivalent Static Analysis is performed for regular buildings up to 90m height in zone I and II, Dynamic Analysis should be performed for regular and irregular buildings in zone IV and V. Dynamic Analysis can take the form of a dynamic Time History Analysis or a linear Response Spectrum Analysis. In present study, Multi-storey irregular buildings with 20 stories have been modeled using software packages ETABS and SAP 2000 v.15 for seismic zone V in India. This paper also deals with the effect of the variation of the building height on the structural response of the shear wall building. Dynamic responses of building under actual earthquakes, EL-CENTRO 1949 and CHI-CHI Taiwan 1999 have been investigated. This paper highlights the accuracy and exactness of Time History analysis in comparison with the most commonly adopted Response Spectrum Analysis and Equivalent Static Analysis.
Keywords: Equivalent Static Analysis, Time history method, Response spectrum method, Reinforce concrete building, displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16144780 A Domain Specific Modeling Language Semantic Model for Artefact Orientation
Authors: Bunakiye R. Japheth, Ogude U. Cyril
Abstract:
Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.
Keywords: Control process, metrics of engineering, structured abstraction, semantic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742