WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10013039,
	  title     = {Synthesis and Physicochemical Characterization of Biomimetic Scaffold of Gelatin/Zn-Incorporated 58S Bioactive Glass},
	  author    = {Seyed Mohammad Hosseini and  Amirhossein Moghanian},
	  country	= {},
	  institution	= {},
	  abstract     = {The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn) in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) activity tests were carried out for investigation of MC3T3-E1 cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases and also HA characteristic peaks were detected by XRD spectroscopy after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of ALP activity test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity and growth of MC3T3-E1 cells in comparison with other samples in bone tissue engineering.},
	    journal   = {International Journal of Biotechnology and Bioengineering},
	  volume    = {17},
	  number    = {3},
	  year      = {2023},
	  pages     = {5 - 10},
	  ee        = {https://publications.waset.org/pdf/10013039},
	  url   	= {https://publications.waset.org/vol/195},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 195, 2023},
	}